Anaerobic digestion (AD) is gaining increasing attention due to the ability to covert organic pollutants into energy-rich biogas and, accordingly, growing interest is paid to the microbial ecology of AD systems. Des...Anaerobic digestion (AD) is gaining increasing attention due to the ability to covert organic pollutants into energy-rich biogas and, accordingly, growing interest is paid to the microbial ecology of AD systems. Despite extensive efforts, AD microbial ecology is still limitedly understood, especially due to the lack of quantitative information on the structures and dynamics of AD microbial communities. Such knowledge gap is particularly pronounced in sewage sludge AD processes although treating sewage sludge is among the major practical applications of AD. Therefore, we examined the microbial communities in three full-scale sewage sludge digesters using qualitative and quantitative molecular techniques in combination: denaturing gradient gel electrophoresis (DGGE) and real-time polymerase chain reaction (PCR). Eight out of eleven bacterial sequences retrieved from the DGGE analysis were not affiliated to any known species while all eleven archaeal sequences were assigned to known methanogen species. Quantitative real-time PCR analysis revealed that, based on the 16S rRNA gene abundance, the hydrogenotrophic order Methanomicrobiales is the most dominant methanogen group (〉 94% of the total methanogen population) in all digesters. This corresponds well to the prevailing occurrence of the DGGE bands related to Methanolinea and Methanospirillum, both belonging to the order Methanomicrobiales, in all sludge samples. It is therefore suggested that hydrogenotrophic methanogens, especially Methanomicrobiales strains, are likely the major players responsible for biogas production in the digesters studied. Our observation is contrary to the conventional understanding that aceticlastic methanogens generally dominate methanogen communities in stable AD environments, suggesting the need for further studies on the dominance relationship in various AD systems.展开更多
Two anaerobic membrane bioreactors(AnMBRs)equipped with different membrane pore size(0.4 or 0.05μm)were operated at 25℃and fed with domestic wastewater.The hydraulic retention time(HRT)of the reactors was shortened....Two anaerobic membrane bioreactors(AnMBRs)equipped with different membrane pore size(0.4 or 0.05μm)were operated at 25℃and fed with domestic wastewater.The hydraulic retention time(HRT)of the reactors was shortened.The microbial communities of the two AnMBRs were investigated by 16S rRNA gene amplicon sequencing to see the effects of HRT.The predominant Archaea was an aceticlastic methanogen Methanosaeta.The composition of hydrogenotrophic methanogens changed with the HRTs:the population of Methanobacterium was higher for longer HRTs,whereas the population of unclassified Methanoregulaceae was higher for shorter HRTs.The Anaerolineae,Bacteroidia and Clostridia bacteria were dominant in both of the reactors,with a combined relative abundance of over 55%.The relative abundance of Anaerolineae was proportional to the biogas production performance.The change in the population of hydrogenotrophic methanogens or Anaerolineae can be used as an indicator for process monitoring.The sum of the relative abundance of Anaerolineae and Clostridia fluctuated slightly with changes in the HRT in both AnMBRs when the reactor was stably operated.The co-occurrence analysis revealed the relative abundance of the operational taxonomic units belonging to Anaerolineae and Clostridia was functionally equivalent during the treatment of real domestic sewage.A principal coordination analysis revealed that the changes in the microbial community in each reactor were consistent with the change of HRT.In addition,both the HRT and the stability of the process are important factors for maintaining microbial community structures.展开更多
基金supported by the 2013 Research Fund of Ulsan National Institute of Science and Technology through a Future Challenge Project
文摘Anaerobic digestion (AD) is gaining increasing attention due to the ability to covert organic pollutants into energy-rich biogas and, accordingly, growing interest is paid to the microbial ecology of AD systems. Despite extensive efforts, AD microbial ecology is still limitedly understood, especially due to the lack of quantitative information on the structures and dynamics of AD microbial communities. Such knowledge gap is particularly pronounced in sewage sludge AD processes although treating sewage sludge is among the major practical applications of AD. Therefore, we examined the microbial communities in three full-scale sewage sludge digesters using qualitative and quantitative molecular techniques in combination: denaturing gradient gel electrophoresis (DGGE) and real-time polymerase chain reaction (PCR). Eight out of eleven bacterial sequences retrieved from the DGGE analysis were not affiliated to any known species while all eleven archaeal sequences were assigned to known methanogen species. Quantitative real-time PCR analysis revealed that, based on the 16S rRNA gene abundance, the hydrogenotrophic order Methanomicrobiales is the most dominant methanogen group (〉 94% of the total methanogen population) in all digesters. This corresponds well to the prevailing occurrence of the DGGE bands related to Methanolinea and Methanospirillum, both belonging to the order Methanomicrobiales, in all sludge samples. It is therefore suggested that hydrogenotrophic methanogens, especially Methanomicrobiales strains, are likely the major players responsible for biogas production in the digesters studied. Our observation is contrary to the conventional understanding that aceticlastic methanogens generally dominate methanogen communities in stable AD environments, suggesting the need for further studies on the dominance relationship in various AD systems.
基金supported by Grant-in-Aids for JSPS Fellows(KAKENHI Grant nos.JP19J11931 and JP19J12023)Scientific Research(B)(KAKENHI Grant no.JP18H01564)+1 种基金Scientific Research(A)(KAKENHI Grant no.JP19H01160)from Japan Society for the Promotion of Scienceby Ministry of the Environment,Japan(Low Carbon Technology Research,Development and Demonstration Program:Innovative sewage treatment system for energy saving and energy production,20172019)。
文摘Two anaerobic membrane bioreactors(AnMBRs)equipped with different membrane pore size(0.4 or 0.05μm)were operated at 25℃and fed with domestic wastewater.The hydraulic retention time(HRT)of the reactors was shortened.The microbial communities of the two AnMBRs were investigated by 16S rRNA gene amplicon sequencing to see the effects of HRT.The predominant Archaea was an aceticlastic methanogen Methanosaeta.The composition of hydrogenotrophic methanogens changed with the HRTs:the population of Methanobacterium was higher for longer HRTs,whereas the population of unclassified Methanoregulaceae was higher for shorter HRTs.The Anaerolineae,Bacteroidia and Clostridia bacteria were dominant in both of the reactors,with a combined relative abundance of over 55%.The relative abundance of Anaerolineae was proportional to the biogas production performance.The change in the population of hydrogenotrophic methanogens or Anaerolineae can be used as an indicator for process monitoring.The sum of the relative abundance of Anaerolineae and Clostridia fluctuated slightly with changes in the HRT in both AnMBRs when the reactor was stably operated.The co-occurrence analysis revealed the relative abundance of the operational taxonomic units belonging to Anaerolineae and Clostridia was functionally equivalent during the treatment of real domestic sewage.A principal coordination analysis revealed that the changes in the microbial community in each reactor were consistent with the change of HRT.In addition,both the HRT and the stability of the process are important factors for maintaining microbial community structures.