Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced...Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible.展开更多
Hydrologic models generally represent the most dominant processes since they are mere simplifications of physical reality and thus are subject to many significant uncertainties. As such, a coupling strategy is propose...Hydrologic models generally represent the most dominant processes since they are mere simplifications of physical reality and thus are subject to many significant uncertainties. As such, a coupling strategy is proposed. To this end, the coupling of the artificial neural network (ANN) with the Xin'anjiang conceptual model with a view to enhance the quality of its flow forecast is presented. The approach uses the latest observations and residuals in runoff/discharge forecasts from the Xin'anjiang model. The two complementary models (Xin'anjiang & ANN) are used in such a way that residuals of the Xin'anjiang model are forecasted by a neural network model so that flow forecasts can be improved as new observations come in. For the complementary neural network, the input data were presented in a patterned format to conform to the calibration regime of the Xin'anjiang conceptual model, using differing variants of the neural network scheme. The results show that there is a substantial improvement in the accuracy of the forecasts when the complementary model was operated on top of the Xin'anjiang conceptual model as compared with the results of the Xin'anjiang model alone.展开更多
Water level prediction of river runoff is an important part of hydrological forecasting.The change of water level not only has the trend and seasonal characteristics,but also contains the noise factors.And the water l...Water level prediction of river runoff is an important part of hydrological forecasting.The change of water level not only has the trend and seasonal characteristics,but also contains the noise factors.And the water level prediction ability of a single model is limited.Since the traditional ARIMA(Autoregressive Integrated Moving Average)model is not accurate enough to predict nonlinear time series,and the WNN(Wavelet Neural Network)model requires a large training set,we proposed a new combined neural network prediction model which combines the WNN model with the ARIMA model on the basis of wavelet decomposition.The combined model fit the wavelet transform sequences whose frequency are high with the WNN,and the scale transform sequence which has low frequency is fitted by the ARIMA model,and then the prediction results of the above are reconstructed by wavelet transform.The daily average water level data of the Liuhe hydrological station in the Chu River Basin of Nanjing are used to forecast the average water level of one day ahead.The combined model is compared with other single models with MATLAB,and the experimental results show that the accuracy of the combined model is improved by 7%compared with the traditional wavelet network under the appropriate wavelet decomposition function and the combined model parameters.展开更多
将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对...将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对网络输出进行修正,实现了非实时校正模式下的连续模拟。根据BK模型的计算流程将其参数分为3个层次,各层次分别使用NSGA-Ⅱ多目标优化算法进行参数优选,提高了模拟精度、优化效率和网络泛化能力。分别将新安江模型的产流、产流分水源计算模块与BK模型相耦合,建立XBK(Xinanjiang runoff production-BK)和XSBK(Xinanjiang runoff production and separation-BK)模型,在呈村等3个不同类型的流域应用新安江模型、BK模型、XBK模型和XSBK模型进行模拟精度比较,结果表明改进的模型模拟精度更高,较好地解决了神经网络模型在水文模拟中存在的问题。展开更多
文摘Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible.
文摘Hydrologic models generally represent the most dominant processes since they are mere simplifications of physical reality and thus are subject to many significant uncertainties. As such, a coupling strategy is proposed. To this end, the coupling of the artificial neural network (ANN) with the Xin'anjiang conceptual model with a view to enhance the quality of its flow forecast is presented. The approach uses the latest observations and residuals in runoff/discharge forecasts from the Xin'anjiang model. The two complementary models (Xin'anjiang & ANN) are used in such a way that residuals of the Xin'anjiang model are forecasted by a neural network model so that flow forecasts can be improved as new observations come in. For the complementary neural network, the input data were presented in a patterned format to conform to the calibration regime of the Xin'anjiang conceptual model, using differing variants of the neural network scheme. The results show that there is a substantial improvement in the accuracy of the forecasts when the complementary model was operated on top of the Xin'anjiang conceptual model as compared with the results of the Xin'anjiang model alone.
文摘Water level prediction of river runoff is an important part of hydrological forecasting.The change of water level not only has the trend and seasonal characteristics,but also contains the noise factors.And the water level prediction ability of a single model is limited.Since the traditional ARIMA(Autoregressive Integrated Moving Average)model is not accurate enough to predict nonlinear time series,and the WNN(Wavelet Neural Network)model requires a large training set,we proposed a new combined neural network prediction model which combines the WNN model with the ARIMA model on the basis of wavelet decomposition.The combined model fit the wavelet transform sequences whose frequency are high with the WNN,and the scale transform sequence which has low frequency is fitted by the ARIMA model,and then the prediction results of the above are reconstructed by wavelet transform.The daily average water level data of the Liuhe hydrological station in the Chu River Basin of Nanjing are used to forecast the average water level of one day ahead.The combined model is compared with other single models with MATLAB,and the experimental results show that the accuracy of the combined model is improved by 7%compared with the traditional wavelet network under the appropriate wavelet decomposition function and the combined model parameters.
文摘将BP神经网络与K-最近邻(KNN)算法耦合起来,建立BK(BP-KNN)模型,该模型以前期模拟流量和相应影响要素作为BP神经网络的输入,出口断面流量作为网络输出,对产汇流过程进行模拟;采用K-最近邻算法,基于历史样本的模拟误差和相应影响要素对网络输出进行修正,实现了非实时校正模式下的连续模拟。根据BK模型的计算流程将其参数分为3个层次,各层次分别使用NSGA-Ⅱ多目标优化算法进行参数优选,提高了模拟精度、优化效率和网络泛化能力。分别将新安江模型的产流、产流分水源计算模块与BK模型相耦合,建立XBK(Xinanjiang runoff production-BK)和XSBK(Xinanjiang runoff production and separation-BK)模型,在呈村等3个不同类型的流域应用新安江模型、BK模型、XBK模型和XSBK模型进行模拟精度比较,结果表明改进的模型模拟精度更高,较好地解决了神经网络模型在水文模拟中存在的问题。