The function of estuary wetland on hydrological adjustment and flooding control is studied in this paper. It is estimated that the evapotranspiration in the reed field during growth season(June to October) is 722.9 mm...The function of estuary wetland on hydrological adjustment and flooding control is studied in this paper. It is estimated that the evapotranspiration in the reed field during growth season(June to October) is 722.9 mm, which is 37.5% higher than large water body(E 601∶525.9 mm). The water replacement rate in the reed field can reach 95% only when the rains continuously for 11 days and the precipitation reached 912 mm. For the water balance in the paddy field, the total water requirement ranges between 1920 and 1860 mm, among which, 31% is from precipitation, and the left is provided by reservoirs. The water usage efficiency is 0.35 at present productivity. Based on the landscape characteristics and functionalities on flooding control, 5 functional zones are designed for the Liaohe Delta: key protected area; underground storage area; flooding discharge area; flood diversion area in emergency; and flood control drainage area.展开更多
In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the ...In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the basin is more vulnerable to climate variability, especially precipitation and temperature. Observed hydroclimatic data (1950-2015) was analysed using a statistical approach. The potential impact of future climate change on the hydrological regime is quantified using the GR2M model and two climate models: HadGEM2-ES and MIROC5 from CMIP5 under RCP 4.5 and RCP 8.5 greenhouse gas emission scenarios. The main result shows that precipitation varies significantly according to the geographical location and time in the Upper Benue basin. The trend analysis of climatic parameters shows a decrease in annual average precipitation across the study area at a rate of -0.568 mm/year which represents about 37 mm/year over the time 1950-2015 compared to the 1961-1990 reference period. An increase of 0.7°C in mean temperature and 14% of PET are also observed according to the same reference period. The two climate models predict a warming of the basin of about 2°C for both RCP 4.5 and 8.5 scenarios and an increase in precipitation between 1% and 10% between 2015 and 2100. Similarly, the average annual flow is projected to increase by about +2% to +10% in the future for both RCP 4.5 and 8.5 scenarios between 2015 and 2100. Therefore, it is primordial to develop adaptation and mitigation measures to manage efficiently the availability of water resources.展开更多
Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in M...Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in Maharashtra using the Soil and Water Assessment Tool (SWAT). SWAT is a process-based hydrological model used to predict water balance components, sediment levels, and nutrient contamination. In this research, we used integrated remote sensing and GIS data, including Digital Elevation Models (DEM), land use and land cover (LULC) maps, soil maps, and observed precipitation and temperature data, as input for developing the SWAT model to assess surface runoff in this large river basin. The Godavari River Basin under study was divided into 25 sub-basins, comprising 151 hydrological response units categorized by unique land cover, soil, and slope characteristics using the SWAT model. The model was calibrated and validated against observed runoff data for two time periods: 2003-2006 and 2007-2010 respectively. Model performance was assessed using the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2). The results show the effectiveness of the SWAT2012 model, with R2 value of 0.84 during calibration and 0.86 during validation. NSE values also ranged from 0.84 during calibration to 0.85 during validation. These findings enhance our understanding of surface runoff dynamics in the Godavari River Basin under study and highlight the suit-ability of the SWAT model for this region.展开更多
It is acknowledged today within the scientific community that two types of actions must be considered to limit global warming: mitigation actions by reducing GHG emissions, to contain the rate of global warming, and a...It is acknowledged today within the scientific community that two types of actions must be considered to limit global warming: mitigation actions by reducing GHG emissions, to contain the rate of global warming, and adaptation actions to adapt societies to Climate Change, to limit losses and damages [1] [2]. As far as adaptation actions are concerned, numerical simulation, due to its results, its costs which require less investment than tests carried out on complex mechanical structures, and its implementation facilities, appears to be a major step in the design and prediction of complex mechanical systems. However, despite the quality of the results obtained, biases and inaccuracies related to the structure of the models do exist. Therefore, there is a need to validate the results of this SARIMA-LSTM-digital learning model adjusted by a matching approach, “calculating-test”, in order to assess the quality of the results and the performance of the model. The methodology consists of exploiting two climatic databases (temperature and precipitation), one of which is in-situ and the other spatial, all derived from grid points. Data from the dot grids are processed and stored in specific formats and, through machine learning approaches, complex mathematical equations are worked out and interconnections within the climate system established. Through this mathematical approach, it is possible to predict the future climate of the Sudano-Sahelian zone of Cameroon and to propose adaptation strategies.展开更多
Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and qu...Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.展开更多
Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculati...Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculating the viscoelastic response to surface loading.In one,the elastic equation of motion is converted to a viscoelastic equation using the Correspondence Principle.In the other,elastic deformation is added to the viscous flow as isostatic adjustment proceeds.The two modeling methods predict adjustment histories that are different enough to potentially impact the interpretation of the observed glacial isostatic adjustment(GIA).The differences arise from buoyancy and whether fluid displacements are subjected to hydrostatic pre-stress.The methods agree if they use the same equations and boundary conditions.The origin of the differences is determined by varying the boundary conditions and pre-stress application.展开更多
AIM:To observe early clinical outcome with lens position adjustment following the implantable collamer lens(ICL)surgery.METHODS:Sixty patients were selected for this retrospective study.One eye from each patient recei...AIM:To observe early clinical outcome with lens position adjustment following the implantable collamer lens(ICL)surgery.METHODS:Sixty patients were selected for this retrospective study.One eye from each patient received Toric ICL for astigmatism correction,and the other received non-astigmatic ICL surgery using horizontal position.Patients with higher postoperative arch height were selected,and their non-astigmatic eye clinical outcome were observed after ICL surgery at 1wk,1,and 3mo.The clinical measurements included uncorrected visual acuity(UCVA),intraocular pressure(IOP),refractive state,corneal endothelium cell count,and arch height.Three months later,the ICL in each patient’s non-astigmatic eye was adjusted to the vertical from the horizontal position.The results were compared before and 1wk,1,and 3mo after adjustment.RESULTS:UCVA and IOP were significantly reduced 1wk after position adjustment compared to 1wk after ICL implantation(P<0.05).The patients demonstrated significantly reduced arch height and corneal endothelium cell count 1wk,1,and 3mo after adjusting position compared to 1wk,1,and 3mo after ICL implantation(P<0.05).However,there was no significant difference in refraction between 1wk,1,and 3mo after ICL implantation and position adjustment(P>0.05).CONCLUSION:Early positioning adjustment postphakic ICL implantation can benefit patients with adjusted arch height or higher IOP.Despite the good clinical effects,the doctors should pay attention to the potential for adverse effects on UCVA and corneal endothelium cells following early position adjustment after posterior chamber phakic ICL implantation.展开更多
Hydrological models are crucial for characterizing large-scale water quantity variations and correcting GNSS reference station vertical displacements.We evaluated the robustness of multiple models,such as the Global L...Hydrological models are crucial for characterizing large-scale water quantity variations and correcting GNSS reference station vertical displacements.We evaluated the robustness of multiple models,such as the Global Land Data Assimilation System (GLDAS),the Famine Early Warning System Network Land Data Assimilation System (FLDAS),the National Centers for Environmental Prediction (NCEP),and the WaterGAP Global Hydrology Model (WGHM).Inter-model and outer comparisons with Global Positioning System (GPS) coordinate time series,satellite gravity field Mascon solutions,and Global Precipitation Climatology Centre (GPCC) guide our assessment.Results confirm WGHM's 26% greater effectiveness in correcting nonlinear variations in GPS height time series compared to NCEP.In the Amazon River Basin,a 5-month lag between FLDAS,GLDAS,and satellite gravity results is observed.In eastern Asia and Australia,NCEP's Terrestrial Water Storage Changes (TWSC)-derived surface displacements correlate differently with precipitation compared to other models.Three combined hydrological models (H-VCE,H-EWM,and H-CVM) utilizing Variance Component Estimation (VCE),Entropy Weight Method (EWM),and Coefficient of Variation Method (CVM) are formulated.Correcting nonlinear variations with combined models enhances global GPS height scatter by 15%-17%.Correlation with precipitation increases by 25%-30%,and with satellite gravity,rises from 0.2 to 0.8 at maximum.The combined model eliminates time lag in the Amazon Basin TWSC analysis,exhibiting a four times higher signal-to-noise ratio than single models.H-VCE demonstrates the highest accuracy.In summary,the combined hydrological model minimizes discrepancies among individual models,significantly improving accuracy for monitoring large-scale TWSC.展开更多
As a unique environmental regulation in China,the official accountability audit was piloted in 2014.With a focus on prioritizing the ecological environment,officials in pilot districts have implemented economic constr...As a unique environmental regulation in China,the official accountability audit was piloted in 2014.With a focus on prioritizing the ecological environment,officials in pilot districts have implemented economic construction,adjusted industrial structures,and promoted coordinated development between the economy and environment.The effects of implementation have garnered widespread attention from society.However,there is limited research on the impact of an accountability audit on industrial structure adjustments.Using the“Accountability Audit of Officials for Natural Resource Assets(Trial)”released in 2015 as a quasi-natural experiment,this study collected panel data from 279 cities between 2013 and 2017.It then empirically analyzed the impact mechanism and effects of the accountability audit on industrial structure adjustment using the Propensity Score Matching and Difference-in-Differences model.The research findings indicate that the accountability audit directly impacted industrial structure adjustment,promoting the upgrading of the primary industry to the secondary industry and restricting the development of the tertiary industry.In addition,the audit is beneficial for enterprise entry,but not conducive to technological innovation,and has no significant impact on foreign direct investment.This conclusion fills a gap in the existing research and provides valuable insights for policymakers.展开更多
Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This stud...Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.展开更多
Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is ...Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is needed to ensure unbiased estimation or prediction and thus increase the accuracy of field data evaluation. A moving grid adjustment (MGA) method, which was proposed by Technow, was evaluated through Monte Carlo simulation for its statistical properties regarding field spatial variation control. Our simulation results showed that the MGA method can effectively account for field spatial variation if it does exist;however, this method will not change phenotype results if field spatial variation does not exist. The MGA method was applied to a large-scale cotton field trial data set with two representative agronomic traits: lint yield (strong field spatial pattern) and lint percentage (no field spatial pattern). The results suggested that the MGA method was able to effectively separate the spatial variation including blocking effects from random error variation for lint yield while the adjusted data remained almost identical to the original phenotypic data. With application of the MGA method, the estimated variance for residuals was significantly reduced (62.2% decrease) for lint yield while more genetic variation (29.7% increase) was detected compared to the original data analysis subject to the conventional randomized complete block design analysis. On the other hand, the results were almost identical for lint percentage with and without the application of the MGA method. Therefore, the MGA method can be a useful addition to enhance data analysis when field spatial pattern exists.展开更多
The aim of this study was to investigate the adjustment problems of students from the United States enrolled in universities in the East,specifically in Taiwan,their problems related to cultural adaptation,and the pro...The aim of this study was to investigate the adjustment problems of students from the United States enrolled in universities in the East,specifically in Taiwan,their problems related to cultural adaptation,and the process of adjustment to student life in Taiwan.Under investigation were cultural adjustment and coping skills as these students transitioned from West to East.Qualitative data were collected from interviews with participants and faculty members as well as participant observations.Results indicated that U.S.students found their own ways to acclimate to their new academic setting as well as to social relations,cross-cultural issues,and the linguistic environment in Taiwan to achieve effective adaptation.They made changes in themselves to cope with all situations they encountered.This study provides suggestions for international students abroad in Taiwan,for the Taiwan Residents government,and for universities or colleges in terms of what they should offer to current and future international students.展开更多
The 3D reconstruction pipeline uses the Bundle Adjustment algorithm to refine the camera and point parameters. The Bundle Adjustment algorithm is a compute-intensive algorithm, and many researchers have improved its p...The 3D reconstruction pipeline uses the Bundle Adjustment algorithm to refine the camera and point parameters. The Bundle Adjustment algorithm is a compute-intensive algorithm, and many researchers have improved its performance by implementing the algorithm on GPUs. In the previous research work, “Improving Accuracy and Computational Burden of Bundle Adjustment Algorithm using GPUs,” the authors demonstrated first the Bundle Adjustment algorithmic performance improvement by reducing the mean square error using an additional radial distorting parameter and explicitly computed analytical derivatives and reducing the computational burden of the Bundle Adjustment algorithm using GPUs. The naïve implementation of the CUDA code, a speedup of 10× for the largest dataset of 13,678 cameras, 4,455,747 points, and 28,975,571 projections was achieved. In this paper, we present the optimization of the Bundle Adjustment algorithm CUDA code on GPUs to achieve higher speedup. We propose a new data memory layout for the parameters in the Bundle Adjustment algorithm, resulting in contiguous memory access. We demonstrate that it improves the memory throughput on the GPUs, thereby improving the overall performance. We also demonstrate an increase in the computational throughput of the algorithm by optimizing the CUDA kernels to utilize the GPU resources effectively. A comparative performance study of explicitly computing an algorithm parameter versus using the Jacobians instead is presented. In the previous work, the Bundle Adjustment algorithm failed to converge for certain datasets due to several block matrices of the cameras in the augmented normal equation, resulting in rank-deficient matrices. In this work, we identify the cameras that cause rank-deficient matrices and preprocess the datasets to ensure the convergence of the BA algorithm. Our optimized CUDA implementation achieves convergence of the Bundle Adjustment algorithm in around 22 seconds for the largest dataset compared to 654 seconds for the sequential implementation, resulting in a speedup of 30×. Our optimized CUDA implementation presented in this paper has achieved a 3× speedup for the largest dataset compared to the previous naïve CUDA implementation.展开更多
Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the f...Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the flexible regulation capabilities of distribution stations,amulti-temporal and spatial scale regulation capability assessment technique is proposed for distribution station areas with distributed photovoltaics,considering different geographical locations,coverage areas,and response capabilities.Firstly,the multi-temporal scale regulation characteristics and response capabilities of different regulation resources in distribution station areas are analyzed,and a resource regulation capability model is established to quantify the adjustable range of different regulation resources.On this basis,considering the limitations of line transmission capacity,a regulation capability assessment index for distribution stations is proposed to evaluate their regulation capabilities.Secondly,considering different geographical locations and coverage areas,a comprehensive performance index based on electrical distance modularity and active power balance is established,and a cluster division method based on genetic algorithms is proposed to fully leverage the coordination and complementarity among nodes and improve the active power matching degree within clusters.Simultaneously,an economic optimization model with the objective of minimizing the economic cost of the distribution station is established,comprehensively considering the safety constraints of the distribution network and the regulation constraints of resources.This model can provide scientific guidance for the economic dispatch of the distribution station area.Finally,case studies demonstrate that the proposed assessment and optimization methods effectively evaluate the regulation capabilities of distribution stations,facilitate the consumption of distributed photovoltaics,and enhance the economic efficiency of the distribution station area.展开更多
Administrative regions are an important environment for the operation of China's market economy.The relevant economic subjects cannot predict the policy of adjustment of administrative divisions and carry out cons...Administrative regions are an important environment for the operation of China's market economy.The relevant economic subjects cannot predict the policy of adjustment of administrative divisions and carry out conscious migration behavior,adjustment of administrative divisions can be regarded as a quasi-natural experiment.The three cities of Hefei,Wuhu,and Ma'anshan,which are directly related to the adjustment of the administrative division of Chaohu,are taken as the treatment group,and the seven adjacent cities of Lu'an,Huainan,Chuzhou,Bengbu,Anqing,Chizhou,and Tongling are taken as the control group.Differences-in-Differences method and relevant control variables affecting the upgrading of industrial structure are used to test.The test results show that"Partitions of Chaohu"has a significant industrial structure upgrading effect by promoting the optimization of spatial layout,the cross-regional flow of production factors and the effective management of Chaohu Lake Basin.At the same time,the increase of total retail sales of consumer goods,urban fixed assets investment,public utility expenses in science,education,culture and health,and population plays a significant positive role in promoting the upgrading of industrial structure,while foreign direct investment plays a certain inhibition role in the upgrading of industrial structure.In order to meet the ever-developing space demands and enhance the impact on surrounding areas,the Hefei metropolitan area should be driven by technological innovation,strengthen the integration of industrial chains,improve the business environment and transportation network,and continuously promote the upgrading of industrial structure and the formation and development of new productive forces.展开更多
Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power ...Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power generation/selling integrated companies.Therefore,this article proposes an assessment index system for assessing the operational performance of a power generation/selling integrated company,encompassing three dimensions:basic capacity,development potential,and external environment.A dynamic proportional adjustment coefficient is designed,along with a subjective and objective weighting model for assessment indexes based on a combined weightingmethod.Subsequently,the operational performance of an integrated company is assessed using extension theory.The results in the case study demonstrate the feasibility and effectiveness of the proposed dynamic proportional adjustment coefficient.展开更多
Hydrological process factors are a reflection of the physical mechanism of basin hydrology,which can provide important basis for the use and protection of water resources.Taking Heihe River Mountain Basin as the study...Hydrological process factors are a reflection of the physical mechanism of basin hydrology,which can provide important basis for the use and protection of water resources.Taking Heihe River Mountain Basin as the study area,the hydrological simulation was made based on SWAT-GIS integrated model platform.The calculation methods of hydrological process factors using SWAT model were described based on the simulation results of runoff from 1990 to 2000.Hydrological process factors in the study area were analyzed by using GIS technology.The spatial and temporal characteristics of precipitation,runoff,infiltration,evapotranspiration and snowmelt in the basin were calculated and analyzed.展开更多
[ Objective] The purpose was to discuss drought resistance mechanism of Chenopodium album L. and supply theoretical basis and practical guidance for artificial cultivation and popularization of C. album. [ Method] C. ...[ Objective] The purpose was to discuss drought resistance mechanism of Chenopodium album L. and supply theoretical basis and practical guidance for artificial cultivation and popularization of C. album. [ Method] C. album seedlings grown to 6th leaf stage were conducted osmotic stress treatment with PEG6000 osmotic whose concentration was set up as 0, 5%, 10% and 20% and the various physiological indices of the 3rd -5th function leaves in upper plant were determined after being treated for 0, 1,3, 5, 7 and 9 d. [ Result] Under osmotic stress with 5% PGE, the relative water content (RWC) of C. album reduced less. Under osmotic stress with 10%, the RWC in seedling leaves of C. album decreased to 62% on the fifth day and the leaves began to wither. Under osmotic stress with 20%, the RWC in seedling leaves of C. album decreased to 61.9% on the third day and the leaves appeared withering, and the RWC decreased to 48.6% on the 7th day and the leaves were dry and yellow. Proline contents in seedling leaves of C. album under osmotic stress with 5%, 10% and 20% PEG were 7.64, 10.9 and 29.4 times of CK on the 7th day. [ Conclusion] C. album hed some adaptability to moderate osmotic stress, but the PEG osmotic stress with high concentration and long time might lead to severe damage on C. album.展开更多
文摘The function of estuary wetland on hydrological adjustment and flooding control is studied in this paper. It is estimated that the evapotranspiration in the reed field during growth season(June to October) is 722.9 mm, which is 37.5% higher than large water body(E 601∶525.9 mm). The water replacement rate in the reed field can reach 95% only when the rains continuously for 11 days and the precipitation reached 912 mm. For the water balance in the paddy field, the total water requirement ranges between 1920 and 1860 mm, among which, 31% is from precipitation, and the left is provided by reservoirs. The water usage efficiency is 0.35 at present productivity. Based on the landscape characteristics and functionalities on flooding control, 5 functional zones are designed for the Liaohe Delta: key protected area; underground storage area; flooding discharge area; flood diversion area in emergency; and flood control drainage area.
文摘In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the basin is more vulnerable to climate variability, especially precipitation and temperature. Observed hydroclimatic data (1950-2015) was analysed using a statistical approach. The potential impact of future climate change on the hydrological regime is quantified using the GR2M model and two climate models: HadGEM2-ES and MIROC5 from CMIP5 under RCP 4.5 and RCP 8.5 greenhouse gas emission scenarios. The main result shows that precipitation varies significantly according to the geographical location and time in the Upper Benue basin. The trend analysis of climatic parameters shows a decrease in annual average precipitation across the study area at a rate of -0.568 mm/year which represents about 37 mm/year over the time 1950-2015 compared to the 1961-1990 reference period. An increase of 0.7°C in mean temperature and 14% of PET are also observed according to the same reference period. The two climate models predict a warming of the basin of about 2°C for both RCP 4.5 and 8.5 scenarios and an increase in precipitation between 1% and 10% between 2015 and 2100. Similarly, the average annual flow is projected to increase by about +2% to +10% in the future for both RCP 4.5 and 8.5 scenarios between 2015 and 2100. Therefore, it is primordial to develop adaptation and mitigation measures to manage efficiently the availability of water resources.
文摘Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in Maharashtra using the Soil and Water Assessment Tool (SWAT). SWAT is a process-based hydrological model used to predict water balance components, sediment levels, and nutrient contamination. In this research, we used integrated remote sensing and GIS data, including Digital Elevation Models (DEM), land use and land cover (LULC) maps, soil maps, and observed precipitation and temperature data, as input for developing the SWAT model to assess surface runoff in this large river basin. The Godavari River Basin under study was divided into 25 sub-basins, comprising 151 hydrological response units categorized by unique land cover, soil, and slope characteristics using the SWAT model. The model was calibrated and validated against observed runoff data for two time periods: 2003-2006 and 2007-2010 respectively. Model performance was assessed using the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2). The results show the effectiveness of the SWAT2012 model, with R2 value of 0.84 during calibration and 0.86 during validation. NSE values also ranged from 0.84 during calibration to 0.85 during validation. These findings enhance our understanding of surface runoff dynamics in the Godavari River Basin under study and highlight the suit-ability of the SWAT model for this region.
文摘It is acknowledged today within the scientific community that two types of actions must be considered to limit global warming: mitigation actions by reducing GHG emissions, to contain the rate of global warming, and adaptation actions to adapt societies to Climate Change, to limit losses and damages [1] [2]. As far as adaptation actions are concerned, numerical simulation, due to its results, its costs which require less investment than tests carried out on complex mechanical structures, and its implementation facilities, appears to be a major step in the design and prediction of complex mechanical systems. However, despite the quality of the results obtained, biases and inaccuracies related to the structure of the models do exist. Therefore, there is a need to validate the results of this SARIMA-LSTM-digital learning model adjusted by a matching approach, “calculating-test”, in order to assess the quality of the results and the performance of the model. The methodology consists of exploiting two climatic databases (temperature and precipitation), one of which is in-situ and the other spatial, all derived from grid points. Data from the dot grids are processed and stored in specific formats and, through machine learning approaches, complex mathematical equations are worked out and interconnections within the climate system established. Through this mathematical approach, it is possible to predict the future climate of the Sudano-Sahelian zone of Cameroon and to propose adaptation strategies.
基金funded by the National Natural Science Foundation of China(No.42372331)the Henan Excellent Youth Science Fund Project(No.242300421145)the Colleges and Universities Youth and Innovation Science and Technology Support Plan of Shandong Province(No.2021KJ024).
文摘Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.
文摘Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculating the viscoelastic response to surface loading.In one,the elastic equation of motion is converted to a viscoelastic equation using the Correspondence Principle.In the other,elastic deformation is added to the viscous flow as isostatic adjustment proceeds.The two modeling methods predict adjustment histories that are different enough to potentially impact the interpretation of the observed glacial isostatic adjustment(GIA).The differences arise from buoyancy and whether fluid displacements are subjected to hydrostatic pre-stress.The methods agree if they use the same equations and boundary conditions.The origin of the differences is determined by varying the boundary conditions and pre-stress application.
基金Supported by Tianjin Key Medical Discipline(Specialty)Construction Project(No.TJYXZDXK-037A).
文摘AIM:To observe early clinical outcome with lens position adjustment following the implantable collamer lens(ICL)surgery.METHODS:Sixty patients were selected for this retrospective study.One eye from each patient received Toric ICL for astigmatism correction,and the other received non-astigmatic ICL surgery using horizontal position.Patients with higher postoperative arch height were selected,and their non-astigmatic eye clinical outcome were observed after ICL surgery at 1wk,1,and 3mo.The clinical measurements included uncorrected visual acuity(UCVA),intraocular pressure(IOP),refractive state,corneal endothelium cell count,and arch height.Three months later,the ICL in each patient’s non-astigmatic eye was adjusted to the vertical from the horizontal position.The results were compared before and 1wk,1,and 3mo after adjustment.RESULTS:UCVA and IOP were significantly reduced 1wk after position adjustment compared to 1wk after ICL implantation(P<0.05).The patients demonstrated significantly reduced arch height and corneal endothelium cell count 1wk,1,and 3mo after adjusting position compared to 1wk,1,and 3mo after ICL implantation(P<0.05).However,there was no significant difference in refraction between 1wk,1,and 3mo after ICL implantation and position adjustment(P>0.05).CONCLUSION:Early positioning adjustment postphakic ICL implantation can benefit patients with adjusted arch height or higher IOP.Despite the good clinical effects,the doctors should pay attention to the potential for adverse effects on UCVA and corneal endothelium cells following early position adjustment after posterior chamber phakic ICL implantation.
基金funded by the National Natural Science Foundation of China (42174030)Major Science and Technology Program for Hubei Province (Grant No.2022AAA002)+2 种基金Special fund of Hubei Luojia Loboratory (220100020)the National Natural Science Foundation of China under Grant 42304031the China Postdoctoral Science Foundation 2022M722441。
文摘Hydrological models are crucial for characterizing large-scale water quantity variations and correcting GNSS reference station vertical displacements.We evaluated the robustness of multiple models,such as the Global Land Data Assimilation System (GLDAS),the Famine Early Warning System Network Land Data Assimilation System (FLDAS),the National Centers for Environmental Prediction (NCEP),and the WaterGAP Global Hydrology Model (WGHM).Inter-model and outer comparisons with Global Positioning System (GPS) coordinate time series,satellite gravity field Mascon solutions,and Global Precipitation Climatology Centre (GPCC) guide our assessment.Results confirm WGHM's 26% greater effectiveness in correcting nonlinear variations in GPS height time series compared to NCEP.In the Amazon River Basin,a 5-month lag between FLDAS,GLDAS,and satellite gravity results is observed.In eastern Asia and Australia,NCEP's Terrestrial Water Storage Changes (TWSC)-derived surface displacements correlate differently with precipitation compared to other models.Three combined hydrological models (H-VCE,H-EWM,and H-CVM) utilizing Variance Component Estimation (VCE),Entropy Weight Method (EWM),and Coefficient of Variation Method (CVM) are formulated.Correcting nonlinear variations with combined models enhances global GPS height scatter by 15%-17%.Correlation with precipitation increases by 25%-30%,and with satellite gravity,rises from 0.2 to 0.8 at maximum.The combined model eliminates time lag in the Amazon Basin TWSC analysis,exhibiting a four times higher signal-to-noise ratio than single models.H-VCE demonstrates the highest accuracy.In summary,the combined hydrological model minimizes discrepancies among individual models,significantly improving accuracy for monitoring large-scale TWSC.
文摘As a unique environmental regulation in China,the official accountability audit was piloted in 2014.With a focus on prioritizing the ecological environment,officials in pilot districts have implemented economic construction,adjusted industrial structures,and promoted coordinated development between the economy and environment.The effects of implementation have garnered widespread attention from society.However,there is limited research on the impact of an accountability audit on industrial structure adjustments.Using the“Accountability Audit of Officials for Natural Resource Assets(Trial)”released in 2015 as a quasi-natural experiment,this study collected panel data from 279 cities between 2013 and 2017.It then empirically analyzed the impact mechanism and effects of the accountability audit on industrial structure adjustment using the Propensity Score Matching and Difference-in-Differences model.The research findings indicate that the accountability audit directly impacted industrial structure adjustment,promoting the upgrading of the primary industry to the secondary industry and restricting the development of the tertiary industry.In addition,the audit is beneficial for enterprise entry,but not conducive to technological innovation,and has no significant impact on foreign direct investment.This conclusion fills a gap in the existing research and provides valuable insights for policymakers.
基金funded by the National Natural Science Foundation of China(42371022,42030501,41877148).
文摘Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.
文摘Spatial variation is often encountered when large scale field trials are conducted which can result in biased estimation or prediction of treatment (i.e. genotype) values. An effective removal of spatial variation is needed to ensure unbiased estimation or prediction and thus increase the accuracy of field data evaluation. A moving grid adjustment (MGA) method, which was proposed by Technow, was evaluated through Monte Carlo simulation for its statistical properties regarding field spatial variation control. Our simulation results showed that the MGA method can effectively account for field spatial variation if it does exist;however, this method will not change phenotype results if field spatial variation does not exist. The MGA method was applied to a large-scale cotton field trial data set with two representative agronomic traits: lint yield (strong field spatial pattern) and lint percentage (no field spatial pattern). The results suggested that the MGA method was able to effectively separate the spatial variation including blocking effects from random error variation for lint yield while the adjusted data remained almost identical to the original phenotypic data. With application of the MGA method, the estimated variance for residuals was significantly reduced (62.2% decrease) for lint yield while more genetic variation (29.7% increase) was detected compared to the original data analysis subject to the conventional randomized complete block design analysis. On the other hand, the results were almost identical for lint percentage with and without the application of the MGA method. Therefore, the MGA method can be a useful addition to enhance data analysis when field spatial pattern exists.
文摘The aim of this study was to investigate the adjustment problems of students from the United States enrolled in universities in the East,specifically in Taiwan,their problems related to cultural adaptation,and the process of adjustment to student life in Taiwan.Under investigation were cultural adjustment and coping skills as these students transitioned from West to East.Qualitative data were collected from interviews with participants and faculty members as well as participant observations.Results indicated that U.S.students found their own ways to acclimate to their new academic setting as well as to social relations,cross-cultural issues,and the linguistic environment in Taiwan to achieve effective adaptation.They made changes in themselves to cope with all situations they encountered.This study provides suggestions for international students abroad in Taiwan,for the Taiwan Residents government,and for universities or colleges in terms of what they should offer to current and future international students.
文摘The 3D reconstruction pipeline uses the Bundle Adjustment algorithm to refine the camera and point parameters. The Bundle Adjustment algorithm is a compute-intensive algorithm, and many researchers have improved its performance by implementing the algorithm on GPUs. In the previous research work, “Improving Accuracy and Computational Burden of Bundle Adjustment Algorithm using GPUs,” the authors demonstrated first the Bundle Adjustment algorithmic performance improvement by reducing the mean square error using an additional radial distorting parameter and explicitly computed analytical derivatives and reducing the computational burden of the Bundle Adjustment algorithm using GPUs. The naïve implementation of the CUDA code, a speedup of 10× for the largest dataset of 13,678 cameras, 4,455,747 points, and 28,975,571 projections was achieved. In this paper, we present the optimization of the Bundle Adjustment algorithm CUDA code on GPUs to achieve higher speedup. We propose a new data memory layout for the parameters in the Bundle Adjustment algorithm, resulting in contiguous memory access. We demonstrate that it improves the memory throughput on the GPUs, thereby improving the overall performance. We also demonstrate an increase in the computational throughput of the algorithm by optimizing the CUDA kernels to utilize the GPU resources effectively. A comparative performance study of explicitly computing an algorithm parameter versus using the Jacobians instead is presented. In the previous work, the Bundle Adjustment algorithm failed to converge for certain datasets due to several block matrices of the cameras in the augmented normal equation, resulting in rank-deficient matrices. In this work, we identify the cameras that cause rank-deficient matrices and preprocess the datasets to ensure the convergence of the BA algorithm. Our optimized CUDA implementation achieves convergence of the Bundle Adjustment algorithm in around 22 seconds for the largest dataset compared to 654 seconds for the sequential implementation, resulting in a speedup of 30×. Our optimized CUDA implementation presented in this paper has achieved a 3× speedup for the largest dataset compared to the previous naïve CUDA implementation.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the flexible regulation capabilities of distribution stations,amulti-temporal and spatial scale regulation capability assessment technique is proposed for distribution station areas with distributed photovoltaics,considering different geographical locations,coverage areas,and response capabilities.Firstly,the multi-temporal scale regulation characteristics and response capabilities of different regulation resources in distribution station areas are analyzed,and a resource regulation capability model is established to quantify the adjustable range of different regulation resources.On this basis,considering the limitations of line transmission capacity,a regulation capability assessment index for distribution stations is proposed to evaluate their regulation capabilities.Secondly,considering different geographical locations and coverage areas,a comprehensive performance index based on electrical distance modularity and active power balance is established,and a cluster division method based on genetic algorithms is proposed to fully leverage the coordination and complementarity among nodes and improve the active power matching degree within clusters.Simultaneously,an economic optimization model with the objective of minimizing the economic cost of the distribution station is established,comprehensively considering the safety constraints of the distribution network and the regulation constraints of resources.This model can provide scientific guidance for the economic dispatch of the distribution station area.Finally,case studies demonstrate that the proposed assessment and optimization methods effectively evaluate the regulation capabilities of distribution stations,facilitate the consumption of distributed photovoltaics,and enhance the economic efficiency of the distribution station area.
文摘Administrative regions are an important environment for the operation of China's market economy.The relevant economic subjects cannot predict the policy of adjustment of administrative divisions and carry out conscious migration behavior,adjustment of administrative divisions can be regarded as a quasi-natural experiment.The three cities of Hefei,Wuhu,and Ma'anshan,which are directly related to the adjustment of the administrative division of Chaohu,are taken as the treatment group,and the seven adjacent cities of Lu'an,Huainan,Chuzhou,Bengbu,Anqing,Chizhou,and Tongling are taken as the control group.Differences-in-Differences method and relevant control variables affecting the upgrading of industrial structure are used to test.The test results show that"Partitions of Chaohu"has a significant industrial structure upgrading effect by promoting the optimization of spatial layout,the cross-regional flow of production factors and the effective management of Chaohu Lake Basin.At the same time,the increase of total retail sales of consumer goods,urban fixed assets investment,public utility expenses in science,education,culture and health,and population plays a significant positive role in promoting the upgrading of industrial structure,while foreign direct investment plays a certain inhibition role in the upgrading of industrial structure.In order to meet the ever-developing space demands and enhance the impact on surrounding areas,the Hefei metropolitan area should be driven by technological innovation,strengthen the integration of industrial chains,improve the business environment and transportation network,and continuously promote the upgrading of industrial structure and the formation and development of new productive forces.
基金supported in part by the Science and Technology Innovation Program of Hunan Province under Grants 2023JJ40046 and 2023JJ30049.
文摘Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power generation/selling integrated companies.Therefore,this article proposes an assessment index system for assessing the operational performance of a power generation/selling integrated company,encompassing three dimensions:basic capacity,development potential,and external environment.A dynamic proportional adjustment coefficient is designed,along with a subjective and objective weighting model for assessment indexes based on a combined weightingmethod.Subsequently,the operational performance of an integrated company is assessed using extension theory.The results in the case study demonstrate the feasibility and effectiveness of the proposed dynamic proportional adjustment coefficient.
基金Supported by National Natural Science Foundation of China(40972207)National S&T Major Project(2009ZX05039-004)~~
文摘Hydrological process factors are a reflection of the physical mechanism of basin hydrology,which can provide important basis for the use and protection of water resources.Taking Heihe River Mountain Basin as the study area,the hydrological simulation was made based on SWAT-GIS integrated model platform.The calculation methods of hydrological process factors using SWAT model were described based on the simulation results of runoff from 1990 to 2000.Hydrological process factors in the study area were analyzed by using GIS technology.The spatial and temporal characteristics of precipitation,runoff,infiltration,evapotranspiration and snowmelt in the basin were calculated and analyzed.
基金Supported by the Natural Science Foundation of Education Department of Jiangsu Province(02KJD18007)the Key Laboratory Program of Bio-re-sources of Jiangsu Province(KJS03042)the Key Program of Natural Science Foundation of Xuzhou Normal University(06XLA11)~~
文摘[ Objective] The purpose was to discuss drought resistance mechanism of Chenopodium album L. and supply theoretical basis and practical guidance for artificial cultivation and popularization of C. album. [ Method] C. album seedlings grown to 6th leaf stage were conducted osmotic stress treatment with PEG6000 osmotic whose concentration was set up as 0, 5%, 10% and 20% and the various physiological indices of the 3rd -5th function leaves in upper plant were determined after being treated for 0, 1,3, 5, 7 and 9 d. [ Result] Under osmotic stress with 5% PGE, the relative water content (RWC) of C. album reduced less. Under osmotic stress with 10%, the RWC in seedling leaves of C. album decreased to 62% on the fifth day and the leaves began to wither. Under osmotic stress with 20%, the RWC in seedling leaves of C. album decreased to 61.9% on the third day and the leaves appeared withering, and the RWC decreased to 48.6% on the 7th day and the leaves were dry and yellow. Proline contents in seedling leaves of C. album under osmotic stress with 5%, 10% and 20% PEG were 7.64, 10.9 and 29.4 times of CK on the 7th day. [ Conclusion] C. album hed some adaptability to moderate osmotic stress, but the PEG osmotic stress with high concentration and long time might lead to severe damage on C. album.