期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Simulation Study on the Effects of Vegetation on Basin Water Balance
1
作者 刘惠民 陶曙华 +2 位作者 陈玉琪 周淮斌 汪健钢 《Meteorological and Environmental Research》 CAS 2010年第10期62-64,68,共4页
By means of SSiB/TOPMODEL model which was the coupled model of simplified simple biosphere model(SSiB)and TOPMODEL,the sensitivity experiment of basin water balance was carried out in Suomo River basin covered by five... By means of SSiB/TOPMODEL model which was the coupled model of simplified simple biosphere model(SSiB)and TOPMODEL,the sensitivity experiment of basin water balance was carried out in Suomo River basin covered by five vegetations,and the effects of vegetation on water balance were analyzed.The results showed that vegetation cover increased canopy transpiration and interception but decreased soil evaporation.The two contrary net effects determined the basin runoff affected by the hydrological effect of vegetation.For the five simulated vegetations,basin evaporation went down but basin runoff went up compared with bare land.When basin was covered by grass,total basin evaporation was highest(1.220 5 mm/d),and total basin runoff was the lowest(0.658 7 mm/d).When deciduous needle-leaf forest covered the basin,total basin evaporation was minimum(1.025 mm/d),while total basin runoff was maximum(0.854 4 mm/d).Transpiration and canopy interception reached maximum values of 0.383 and 0.489 mm/d when covering evergreen coniferous forest.For soil evaporation,it was highest with grass(0.799 mm/d)and lowest with evergreen coniferous forest(0.243 mm/d). 展开更多
关键词 Coupled model Numerical experiment Hydrological effect of vegetation China
下载PDF
THE HYDROLOGICAL EFFECT UNDER HUMAN ACTIVITIESIN THE INLAND WATERSHEDS OF XINJIANG, CHINA 被引量:2
2
作者 LI Xin, JI Fang, ZHOU Hong-fei (Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences, Urumqi 830011, P. K China) 《Chinese Geographical Science》 SCIE CSCD 2001年第1期27-34,共8页
Natural environment, inland water distribution and water circulation has been changed greatly affected by human activities in Xinjiang, China. Human activities developed quickly in the inland watersheds in Xinjiang af... Natural environment, inland water distribution and water circulation has been changed greatly affected by human activities in Xinjiang, China. Human activities developed quickly in the inland watersheds in Xinjiang after 1950. More than 50% of river water is drawn into irrigation area, and all water in parts of little river is drawn to canal or reservoirs. However, there is evident hydrological effect caused by human activities. 1) water distribution in arid land has changed. A lot of river water is drawn into oasis and water table inside of oasis has risen but declined out of oasis. However, water table has declined in some cities because of over pumping for groundwater. 2) Stream process has changed after water drawing and drainage for irrigation. Runoff in the lower reaches of river has generally decreased, and the lower reaches of some rivers are even disappeared for stream. 3) Large watersheds have been divided into several small watersheds. In some tributaries, most of the river water has drawn to irrigation area so that stream in the lower reaches has disappeared for years. 4) Evaporation at oasis has increased from 50–200mm/a to 800–1300mm/a after reclamation. But it decreased to 50mm/a or less out of oasis. Some lakes have reduced or dried. Water-system with canals and reservoirs has appeared in the oases. 5) Water quality of inland rivers and lakes has generally deteriorated because it accepts drainage water from farmland and factories. 6) Effective scale of human activities on hydrological process in arid land has expanded from separate rivers to all watersheds; from surface water to groundwater; from drought season to flood season; and from single year to several years. Scale of the effect of human activities to hydrological process is going larger and larger. Along with the effective usage of water resources in the inland watershed in Xinjiang, the hydrological effect of human activities will be mainly change to: 1) river in pain area will be canalized; 2) stream process will be controlled by human being; 3) lakes in plain area will degenerate; 4) water will be salty in the lower reaches of river. However, hydrological conditions in Xinjiang will be better to water using and to natural environment. 展开更多
关键词 XINJIANG inland rivers human activities hydrological effects
下载PDF
Variable hydrological effects of herbs and shrubs in the arid northeastern Qinghai-Tibet Plateau,China 被引量:1
3
作者 LIU Ya-bin ZHANG Ying +5 位作者 FU Jiang-tao YU Dong-mei HU Xia-song LI Xi-lai QI Zhao-xin LI Shu-xia 《Journal of Mountain Science》 SCIE CSCD 2018年第7期1532-1545,共14页
This study aims to assess the hydrological effects of four herbs and four shrubs planted in a selfestablished test area in Xining Basin of northeastern Qinghai-Tibet Plateau, China. The RainfallIntercepting Capability... This study aims to assess the hydrological effects of four herbs and four shrubs planted in a selfestablished test area in Xining Basin of northeastern Qinghai-Tibet Plateau, China. The RainfallIntercepting Capability(RIC) of the herbs and shrubs was evaluated in rainfall interception experiment at the end of the third, fourth and fifth month of the growth period in 2007. The leaf transpiration rate and the effects of roots on promoting soil moisture evaporation in these plants were also assessed in transpiration experiment and root-soil composite system evaporation experiment in the five month's growth period. It is found that the RIC of the fourstudied herbs follows the order of E. repens, E. dahuricus, A. trachycaulum and L. secalinus; the RIC of the four shrubs follows the order of A. canescens, Z. xanthoxylon, C. korshinskii and N. tangutorum. The RIC of all the herbs is related linearly to their mean height and canopy area(R^2 ≥ 0.9160). The RIC of all the shrubs bears a logarithmic relationship with their mean height(R^2 ≥ 0.9164), but a linear one with their canopy area(R^2 ≥ 0.9356). Moreover, different species show different transpiration rates. Of the four herbs, E. repens has the highest transpiration rate of 1.07 mg/(m^2·s), and of the four shrubs, A. canescens has the highest transpiration rate(0.74 mg/(m^2·s)). The roots of all the herbs and shrubs can promote soil moisture evaporation. Of the four herbs, the evaporation rate of E. repens root-soil composite system is the highest(2.14%), and of the four shrubs,the root-soil composite system of A. canescens has the highest evaporation rate(1.41%). The evaporation rate of the root-soil composite system of E. dahuricus and Z. xanthoxylon bears a second-power linear relationship with evaporation time(R^2 ≥ 0.9924). The moisture content of all the eight root-soil composite systems decreases exponentially with evaporation time(R^2 ≥ 0.8434). The evaporation rate and moisture content of all the plants' root-soil composite systems increases logarithmically(R^2 ≥ 0.9606) and linearly(R^2 ≥ 0.9777) with root volume density. The findings of this study indicate that among the four herbs and four shrubs, E. repens and A. canescens possess the most effective hydrological effects in reducing the soil erosion and shallow landslide in this region. 展开更多
关键词 Plant hydrological effects Rainfall interception capacity Root-soft composite system Transpiration rate Moisture evaporation rate Qinghai-Tibet Plateau
下载PDF
西秦岭森林生态旅游区不同林分类型土壤水文效应研究——以麦积山风景区为例
4
作者 王具元 何鹏 《防护林科技》 2020年第8期14-16,19,共4页
为揭示麦积山风景区不同林分土壤水文效应,采用环刀法对麦积山风景区5种林分林下土壤持水性进行研究。结果表明:5种典型不同林分类型林地土壤0~30 cm容重平均值范围为1.14~1.48 g·cm3,土壤总孔隙度均值为43.40%~54.86%,其中锐齿栎... 为揭示麦积山风景区不同林分土壤水文效应,采用环刀法对麦积山风景区5种林分林下土壤持水性进行研究。结果表明:5种典型不同林分类型林地土壤0~30 cm容重平均值范围为1.14~1.48 g·cm3,土壤总孔隙度均值为43.40%~54.86%,其中锐齿栎林最大,油松+锐齿栎林和油松林次之,油松+辽东栎林最小。不同林分林地土壤最大持水量以锐齿栎林(548.56 t·hm-2)最大,油松+辽东栎林(434.02 t·hm-2)最小,说明锐齿栎林土壤持水能力最强。土壤稳渗速率以油松+锐齿栎林最大(1.52 mm·min-1),油松林最小(1.21 mm·min-1)。5种不同林分林下土壤入渗时间和入渗速率存在着较好的幂函数关系。 展开更多
关键词 麦积山 林分 土壤 水文效应
下载PDF
Hydrological Problem during Urbanization Process
5
作者 Nanzhu Li Junzhong Wang Tianyou Yuan 《Meteorological and Environmental Research》 CAS 2013年第11期16-21,共6页
With the rapid economic and social development, China is in rapid development period of urbanization now. Urbanization is an inevitable trend of mankind development, and is also a necessary stage of a country moving t... With the rapid economic and social development, China is in rapid development period of urbanization now. Urbanization is an inevitable trend of mankind development, and is also a necessary stage of a country moving toward modernization. The rapid development of urbanization has a major impact on urban hydrology. Urban hydrologic environment, hydrologic element, water resources and water quality were discussed in the pa- per. Based on the analysis of urban hydrological effect, from the angles of subject development and application, corresponding countermeasures and outlook of the urban hydrology problem were put forward. The research can provide support for reasonably planning and designing urban flood control and drainage systems to promote urban environment-friendly development, having certain practical significance. 展开更多
关键词 URBANIZATION Urban hydrology Hydrologic effect Urban water resources China
下载PDF
The hydrological effect between Jingjiang River and Dongting Lake during the initial period of Three Gorges Project operation 被引量:34
6
作者 CHANG Jiang LI Jingbao +4 位作者 LU Dianqing ZHU Xiang LU Chengzhi ZHOU Yueyun DENG Chuxiong 《Journal of Geographical Sciences》 SCIE CSCD 2010年第5期771-786,共16页
Based on the measured hydrological data from 1951 to 2008, the chain hydrological effect between Jingjiang River and Dongting Lake is analyzed by comparative method after the Three Gorges Project operation. The result... Based on the measured hydrological data from 1951 to 2008, the chain hydrological effect between Jingjiang River and Dongting Lake is analyzed by comparative method after the Three Gorges Project operation. The result indicates that 1) the scouring amount in Jing- jiang River made up 78.9% of the total from Yichang to Chenglingji, and its average scouring intensity was higher than the latter; 2) the water and sand diversion rates at the three outlets of the Jingjiang River were reduced by 2.33% and 2.78% separately; 3) the proportion of multi-year average runoff and sediment through the three outlets in the total into the Dongting Lake decreased by 7.7% and 24.4% respectively; 4) in Dongting Lake, the speed of sediment accumulation was lowered by 26.7%, in flood season, the runoff amount was 20.2% less than the multi-year average value, leading to seasonal scarcity of water year by year. The former prolonged the lake life, while the latter induced droughts in summer and fall in successive years, shortage of drinking and industrial water, shipping insecurity, as well as ecological problems such as decrease of birds and quick increase of Microtus fortis; 5) The multi-year average values of sediment and flood transporting capacity at the lake outlet were respec- tively increased by 26.6% and 3.7%, the adapt to the new change of the river-lake embankments were protected effectively. Then, to relation, some suggestions were put forward, such as optimizing further operation program of the Three Gorges Reservoir, reexamining the idea of river and lake regulation, and maintaining connection of the river and the lake. 展开更多
关键词 initial period of Three Gorges Project operation silt-discharge relating hydrological effect DongtingLake area
原文传递
Evaluating the hydrological effects of the Three Gorges Reservoir based on a large-scale coupled hydrological-hydrodynamic-dam operation model 被引量:1
7
作者 ZENG Sidong LIU Xin- +3 位作者 XIA Jun DU Hong CHEN Minghao HUANG Renyong 《Journal of Geographical Sciences》 SCIE CSCD 2023年第5期999-1022,共24页
Understanding the hydrological effects of the Three Gorges Dam operation in the entire reservoir area is significant to achieving optimal dam regulation. In this paper, a large-scale coupled hydrological-hydrodynamic-... Understanding the hydrological effects of the Three Gorges Dam operation in the entire reservoir area is significant to achieving optimal dam regulation. In this paper, a large-scale coupled hydrological-hydrodynamic-dam operation model is developed to comprehensively evaluate the hydrological effects of the river-type Three Gorges Reservoir. The results show that the coupled model is effective for hydrological, hydrodynamic regime and hydropower simulations in the reservoir area. Dam operation could have a notable positive effect on flood control and could reduce the maximum daily flood peak by up to 26.2%. It also contributes a large amount of hydropower, approximately 94.27 TWh/year, and a water supply increase for the downstream area of up to 22% during the dry season. In the flood season, the water level at Cuntan would increase under the condition that the water level of the dam is higher than approximately 158 m due to dam operation. In the dry season, attention should be paid to the low flow velocity near the dam in the reservoir area. 展开更多
关键词 hydrological effects Three Gorges Reservoir coupled model flood control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部