期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Hydrology and water resources variation and its response to regional climate change in Xinjiang 被引量:18
1
作者 XU Changchun CHEN Yaning +2 位作者 YANG Yuhui HAO Xingming SHEN Yongping 《Journal of Geographical Sciences》 SCIE CSCD 2010年第4期599-612,共14页
Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-... Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter-annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle. 展开更多
关键词 hydrology and water resources climate change XINJIANG
下载PDF
Variation Trends of Hydrology and Water Resources in Yangtze River Delta Region,China and Its Responses to Climate Change 被引量:3
2
作者 XU Nai-zheng LIU Hong-ying WEI Feng 《Meteorological and Environmental Research》 2012年第6期13-16,共4页
Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta... Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta region, an economic center in China, has experienced a re- gional temperature increase since the 1960s, forming a heat island, and the warming rate has improved since the 1990s. The characteristics of hy- drology and water resources changed under regional climate warming. Here, the impacts of climate change on hydrology and water resources were discussed from the aspects of precipitation change, sea level rise, seawater invasion and water pollution in Yangtze River Delta region, China. 展开更多
关键词 Climate change hydrology and water resources Yangtze River Delta region China China
下载PDF
Low-frequency variability of terrestrial water budget in China using GRACE satellite measurements from 2003 to 2010 被引量:1
3
作者 Kang Kaixuan Li Hui +1 位作者 Peng Peng Zou Zhengbo 《Geodesy and Geodynamics》 2015年第6期444-452,共9页
Mass variations in terrestrial water storage(TWS) obtained from eight years of satellite data from the Gravity Recovery and Climate Experiment(GRACE) are used to describe low frequency TWS through Empirical Orthog... Mass variations in terrestrial water storage(TWS) obtained from eight years of satellite data from the Gravity Recovery and Climate Experiment(GRACE) are used to describe low frequency TWS through Empirical Orthogonal Function(EOF) analysis. Results of the second seasonal EOF mode show the influence of the Meiyu season. Annual variability is clearly shown in the precipitation distribution over China, and two new patterns of interannual variability are presented for the first time from observations, where two periods of abrupt acceleration are seen in 2004 and 2008. GRACE successfully measures drought events in southern China, and in this respect, an association with the Arctic Oscillation and El Nino-Southern Oscillation is discussed. This study demonstrates the unique potential of satellite gravity measurements in monitoring TWS variations and large-scale severe drought in China. 展开更多
关键词 Gravity recovery and climate experiment(GRACE) Terrestrial water storage Drought event Global hydrology models water vapor transport Drought event Empirical orthogonal function(EOF) El Nino-southern oscillation(ENSO)
下载PDF
Water issues and prospects for hydrological science in China 被引量:1
4
作者 Zhong-bo YU Tao YANG Frank W.SCHWARTZ 《Water Science and Engineering》 EI CAS CSCD 2014年第1期1-4,共4页
As a country with one of the world's most rapidly developing economies, China is home to wonderful opportunities for its people and the nation as a whole. An essential element for continued economic prosperity is a w... As a country with one of the world's most rapidly developing economies, China is home to wonderful opportunities for its people and the nation as a whole. An essential element for continued economic prosperity is a water supply of guaranteed quality and quantity, providing critical insurance for food safety, health, and political stability. However, China's economic success has come with serious water resources problems, intensified by human activities and climate change. The nation is now facing extreme levels of water pollution, soil erosion, and sedimentation, along with floods, droughts, and urban storms. Taken together, these impacts have provided a serious headwind to socioeconomic development in China. This article discusses the problems and emerging opportunities for the coming generation of water scientists and engineers. 展开更多
关键词 water issues and prospects for hydrological science in China
下载PDF
Simulation of Water Resources in Buerhatong River Basin
5
作者 Pei Zhengguo 《Meteorological and Environmental Research》 CAS 2014年第11期4-8,共5页
1∶250 000 contour was used to generate 0. 0012°( 4. 32 s) of grid DEM of the basin,to simulate flow line of slope surface and gradient line,automatically draw valley line,and count catchment area at slope surf... 1∶250 000 contour was used to generate 0. 0012°( 4. 32 s) of grid DEM of the basin,to simulate flow line of slope surface and gradient line,automatically draw valley line,and count catchment area at slope surface point. We organized data at the sections with 100 m of interval to simulate water system,establish coding system of river network,and build associated point with slope surface system. " Hillside hydrology" theory simulated subsurface flow between surface water and groundwater,and used catchment water at slope surface point,gradient,valley line and depletion curve to study soil moisture distribution in the basin. 展开更多
关键词 water resources Simulation Hillside hydrology Buerhatong River basin China
下载PDF
Geomorphology and Hydrology of the Benin Region, Edo State, Nigeria
6
作者 Catherine Imhangulaya Ikhile 《International Journal of Geosciences》 2016年第2期144-157,共14页
This paper examines the geomorphology and hydrology of the Benin Region, Edo State, Nigeria. The major landform features and processes of the region are highlighted. This region is a strategic and significant landscap... This paper examines the geomorphology and hydrology of the Benin Region, Edo State, Nigeria. The major landform features and processes of the region are highlighted. This region is a strategic and significant landscape in Nigeria. Information was gathered on the various aspects of the landscape, including the Geology, Physiography (Relief) and Geomorphology, Geomorphic processes, Weathering, Drainage processes, Landforms, Surface Water Hydrology and Water Resources. The Benin Region is underlained by sedimentary formation of the South Sedimentary Basin. The geology is generally marked by top reddish earth, composed of ferruginized or literalized clay sand. Geologically, the Benin Region comprises of 1) the Benin formation;2) alluvium;3) drift/top soil and 4) Azagba-Ogwashi (Asuba-Ogwashi) formation. Several parts of the region are surrounded by the Benin historical moats. The region has been described as a tilled plain in the south western direction. The local relief of the region is 91 m. Boreholes records in the Benin Region show evidence of deep chemical weathering overtime. Soil profile reveals that the region is composed mainly of reddish brown sandy laterite. Intermittent layers of porous sands of sandy clays may reach a large depth as found in the borehole drilled in the region. These are products of deep chemical decay of the original parent rock materials. Three river systems drain the Benin Region. They are the Ikpoba River, the Ogba River and Owigie-Ogbovben River systems. The mean annual discharge of Ikpoba River for 1982-1983 and 1993-2002 was 1411 mm/yr, which was 1.019 × 10<sup>9</sup> m<sup>3</sup> with a mean annual baseflow of 1256.23 mm (0. 907 × 109 m<sup>3</sup>). This constitutes 87.65% of the total flow. It has a mean annual surface runoff of 225.18 mm (0.112 × 10<sup>9</sup> m<sup>3</sup>) or 24.4 % of the total discharge. The water resources of the region include surface water and underground water. 展开更多
关键词 Geology Physiography (Relief) and Geomorphology Geomorphic Processes Weathering Drainage Processes LANDFORMS Surface water hydrology and water Resources
下载PDF
Hydrological Services by Mountain Ecosystems in Qilian Mountain of China: A Review 被引量:6
7
作者 SUN Feixiang LYU Yihe +1 位作者 FU Bojie HU Jian 《Chinese Geographical Science》 SCIE CSCD 2016年第2期174-187,共14页
Hydrological service is a hot issue in the current researches of ecosystem service, particularly in the upper reaches of mountain rivers in dry land areas, where the Qilian Mountain is a representative one. The Qilian... Hydrological service is a hot issue in the current researches of ecosystem service, particularly in the upper reaches of mountain rivers in dry land areas, where the Qilian Mountain is a representative one. The Qilian Mountain, where forest, shrubland and grassland consist of its main ecosystems, can provide fresh water and many other ecosystem services, through a series of eco-hydrological process such as precipitation interception, soil water storage, and fresh water provision. Thus, monitoring water regulation and assessing the hydrological service of the Qilian Mountain are meaningful and helpful for the healthy development of the lower reaches of arid and semi-arid areas. In recent 10 years, hydrological services have been widely researched in terms of scale and landscape pattern, including water conservation, hydrological responses to afforestation and their ecological effects. This study, after analyzing lots of current models and applications of geographical information system(GIS) in hydrological services, gave a scientific and reasonable evaluation of mountain ecosystem in eco-hydrological services, by employing the combination of international forefronts and contentious issues into the Qilian Mountain. Assessments of hydrological services at regional or larger scales are limited compared with studies within watershed scale in the Qilian Mountain. In our evaluation results of forest ecosystems, it is concluded that long-term observation and dynamic monitoring of different types of ecosystem are indispensable, and the hydrological services and the potential variation in water supplement on regional and large scales should be central issues in the future research.v 展开更多
关键词 hydrological service water regulation hydrological response Qilian Mountain
下载PDF
Soil Moisture Response to Rainfall in Forestland and Vegetable Plot in Taihu Lake Basin,China 被引量:4
8
作者 LI Qian ZHU Qing +2 位作者 ZHENG Jinsen LIAO Kaihua YANG Guishan 《Chinese Geographical Science》 SCIE CSCD 2015年第4期426-437,共12页
Soil moisture and its spatial pattern are important for understanding various hydrological,pedological,ecological and agricultural processes.In this study,data of rainfall and soil moisture contents at different depth... Soil moisture and its spatial pattern are important for understanding various hydrological,pedological,ecological and agricultural processes.In this study,data of rainfall and soil moisture contents at different depths(10 cm,20 cm,40 cm and 60 cm) in forestland and vegetable plot in the Taihu Lake Basin,China were monitored and analyzed for characteristics of soil moisture variation and its response to several typical rainfall events.The following results were observed.First,great temporal variation of soil moisture was observed in the surface layer than in deeper layer in vegetable plot.In contrast,in forestland,soil moisture had similar variation pattern at different depths.Second,initial soil moisture was an important factor influencing the vertical movement of soil water during rainfall events.In vegetable plot,simultaneous response of soil moisture to rainfall was observed at 10-and 20-cm depths due to fast infiltration when initial soil was relatively dry.However,traditional downward response order occurred when initial soil was relatively wet.Third,critical soil horizon interface was an active zone of soil water accumulation and lateral movement.A less permeable W-B soil horizon interface(40-cm depth) in vegetable plot can create perched water table above it and elevate the soil water content at the corresponding depth.Fourth,the land cover was an effective control factor of soil moisture during small and moderate rainfall events.In the forestland,moderate and small rainfall events had tiny influences on soil moisture due to canopy and surface O horizon interception.Fifth,preferential flow and lateral subsurface interflow were important paths of soil water movement.During large and long duration rainfall events,lateral subsurface flow and preferential flow through surface crack or soil pipe occurred,which recharged the deep soil.However,in more concentrated large storm,surface crack or soil pipe connected by soil macropores was the main contributor to the occurrence of preferential flow.Findings of this study provide a theoretical foundation for sustainable water and fertilizer management and land use planning in the Taihu Lake Basin. 展开更多
关键词 hydropedology soil hydrology soil water content precipitation preferential flow
下载PDF
Real-time flood forecasting of Huai River with flood diversion and retarding areas 被引量:6
9
作者 Li Zhijia Bao Hongjun +2 位作者 Xue Cangsheng Hu Yuzhong Fang Hong 《Water Science and Engineering》 EI CAS 2008年第2期10-24,共15页
A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time err... A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas. 展开更多
关键词 flood forecasting and regulation Xin’anjiang model Muskingum method water stage simulating hydrologic method diffusion wave nonlinear water stage method flood diversion and retarding area Huai River
下载PDF
Evaluation of alternative surface runoff accounting procedures using SWAT model
10
作者 Haw Yen Michael J.White +2 位作者 Jaehak Jeong Mazdak Arabi Jeffrey G.Arnold 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2015年第3期54-68,共15页
For surface runoff estimation in the Soil and Water Assessment Tool(SWAT)model,the curve number(CN)procedure is commonly adopted to calculate surface runoff by dynamically updating CN values based on antecedent soil m... For surface runoff estimation in the Soil and Water Assessment Tool(SWAT)model,the curve number(CN)procedure is commonly adopted to calculate surface runoff by dynamically updating CN values based on antecedent soil moisture condition(SCSI)in field.From SWAT2005 and onward,an alternative approach has become available to apply the CN method by relating the runoff potential to daily evapotranspiration(SCSII).While improved runoff prediction with SCSII has been reported in several case studies,few investigations have been made on its influence to water quality output or on the model uncertainty associated with the SCSII method.The objectives of the research were:(1)to quantify the improvements in hydrologic and water quality predictions obtained through different surface runoff estimation techniques;and(2)to examine how model uncertainty is affected by combining different surface runoff estimation techniques within SWAT using Bayesian model averaging(BMA).Applications of BMA provide an alternative approach to investigate the nature of structural uncertainty associated with both CN methods.Results showed that SCSII and BMA associated approaches exhibit improved performance in both discharge and total NO3 predictions compared to SCSI.In addition,the application of BMA has a positive effect on finding well performed solutions in the multi-dimensional parameter space,but the predictive uncertainty is not evidently reduced or enhanced.Therefore,we recommend additional future SWAT calibration/validation research with an emphasis on the impact of SCSII on the prediction of other pollutants. 展开更多
关键词 Soil and water Assessment Tool(SWAT) curve number method Bayesian model averaging uncertainty analysis hydrology water quality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部