As-cast and heat-treated 400-18 ductile iron (DI) grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (P) an...As-cast and heat-treated 400-18 ductile iron (DI) grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (P) and Anti- nodulizing Complex Factor (K1) have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE) and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and P〈2.0 are the basic conditions to obtain as-cast ferritic structure. At the same lower level of Mn and P, the increasing of residual elements (P〉2.0) determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P〈0.025%) and residual elements (Px〈2.0) allow to use relative high Mn content (0.32%-0.38%), in condition of ferritic structure, including in as-cast state. High P (0.04%- 0.045%) and Mn (0.25%-0.35%) content stabilized peadite, especially at lower level of residual elements (P 〈2.0). Antinodulizing action of elements was counteracted up to K1=2.0 level, by RE included in Mg-treatment alloy, which are beneficial for K1〈1.2 and compulsory for K1〉1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mg for Px〈1.5 and K1〈1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.展开更多
Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth'...Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth's surface environments.The results reveal that,in comparison to aqueous H_4SiO_4,heavy Si isotopes will be significantly enriched in secondary silicate minerals.On the contrary,quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution.The extent of ^(28)Si-enrichment in hyper-coordinated organosilicon complexes was found to be the largest.In addition,the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer was calculated,and the results support the previous statement that highly ^(28)Sienrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations.With the equilibrium Si isotope fractionation factors provided here,Si isotope distributions in many of Earth's surface systems can be explained.For example,the change of bulk soil δ^(30)Si can be predicted as a concave pattern with respect to the weathering degree,with the minimum value where allophane completely dissolves and the total amount of sesquioxides and poorly crystalline minerals reaches their maximum.When,under equilibrium conditions,the well-crystallized clays start to precipitate from the pore solutions,the bulk soil δ^(30)Si will increase again and reach a constant value.Similarly,the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain the δ^(30)Si variations in the ground water profile.The equilibrium Si isotope fractionations among the quadracoordinated organosilicon complexes and the H_4SiO_4solution may also shed light on the Si isotope distributions in the Si-accumulating plants.展开更多
The"SCI impact factor"of Journal of Natural Gas Chemistry(JNGC)is 1.345,according to the"2010 Journal Citation Reports(JCR)Science Edition".Since 2007,JNGC has been included in the Science Citation Index Expan...The"SCI impact factor"of Journal of Natural Gas Chemistry(JNGC)is 1.345,according to the"2010 Journal Citation Reports(JCR)Science Edition".Since 2007,JNGC has been included in the Science Citation Index Expanded(SCI-E),the Chemistry Citation Index and the Journal Citation Reports/Science Edition,all published by Thomson Scientific,and this is the second time that an impact factor has been assessed for JNGC by the Journal Citation Reports.展开更多
The SCI impact factor of Journal of Natural Gas Chemistry (JNGC) is 1.788, according to the "2013 Journal Citation Reports (JCR) Science Edition". This is the highest SCI impact factor for Journal of Natural Gas...The SCI impact factor of Journal of Natural Gas Chemistry (JNGC) is 1.788, according to the "2013 Journal Citation Reports (JCR) Science Edition". This is the highest SCI impact factor for Journal of Natural Gas Chemistry since the journal was included in the Science Citation Index Expanded (SCIE) in 2007, and it ranks first among chemistry journals in China. Over the past decade, the Journal of Natural Gas Chemistry has become more and more international and has received large numbers of manuscripts concerning energy chemistry. In deed, nowadays enerzy chemistry is becoming one of the hot topics.展开更多
The SCI impact factor of Journal of Natural Gas Chemistry (JNGC) is 1.348, according to the "2011 Journal Citation Reports (JCR) Science Edition". This is the highest SCI impact factor for Journal of Natural Gas...The SCI impact factor of Journal of Natural Gas Chemistry (JNGC) is 1.348, according to the "2011 Journal Citation Reports (JCR) Science Edition". This is the highest SCI impact factor for Journal of Natural Gas Chemistry since the journal was included in the Science Citation Index Expanded (SCIE) in 2007, and it ranks first among chemistry journals in China.展开更多
Mining activities interfere with the natural groundwater chemical environment,which may lead to hydrogeochemical changes of aquifers and mine water inrush disasters.This study analyzed the hydrochemical compositions o...Mining activities interfere with the natural groundwater chemical environment,which may lead to hydrogeochemical changes of aquifers and mine water inrush disasters.This study analyzed the hydrochemical compositions of 80 water samples in three aquifers and developed a water source identification model to explore the control factors and potential hydraulic connection of groundwater chemistry in a coal mine.The results showed that the hydrochemical types of the three aquifers were different.The main hydrochemical compositions of the loose-layer,coal-bearing,and limestone aquifers were HCO_(3)·Cl-Na,SO_(4)·HCO_(3)-Na,and SO_(4)-Na·Ca,respectively.The correlation,Unmix,and factor an-alyses showed that the hydrochemical composition of groundwater was controlled by the dissolution of soluble minerals(such as calcite,dolomite,gypsum,and halite)and the weathering of silicate minerals.The factor score plot combined with Q-mode cluster analysis demon-strated no remarkable hydraulic connection among the three aquifers in the study area.The water source identification model effectively identified the source of inrush water.Moreover,the mixing ratio model rationally quantified the contributions of the three aquifers to inrush water.展开更多
Objective: To explore the role of growth factor autocrine stimulation in the pathogenesis of human pituitary tumors. Methods: The expression of EGF, TGF-( and EGFR were studied by immunohisto-chemical method on paraf...Objective: To explore the role of growth factor autocrine stimulation in the pathogenesis of human pituitary tumors. Methods: The expression of EGF, TGF-( and EGFR were studied by immunohisto-chemical method on paraffin-embedded sections of 30 cases pituitary tumor. Results: EGFR and its ligands EGF, TGF-( expressed in majority of pituitary tumors. The expression of EGFR and its ligands varied with cells' intensity, density and type. Conclusion: The EGF autocrine stimulating exerted in the pituitary tumor development process, that tyrosine kinases inhibitors may be useful for pituitary tumors treatment.展开更多
文摘As-cast and heat-treated 400-18 ductile iron (DI) grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (P) and Anti- nodulizing Complex Factor (K1) have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE) and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and P〈2.0 are the basic conditions to obtain as-cast ferritic structure. At the same lower level of Mn and P, the increasing of residual elements (P〉2.0) determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P〈0.025%) and residual elements (Px〈2.0) allow to use relative high Mn content (0.32%-0.38%), in condition of ferritic structure, including in as-cast state. High P (0.04%- 0.045%) and Mn (0.25%-0.35%) content stabilized peadite, especially at lower level of residual elements (P 〈2.0). Antinodulizing action of elements was counteracted up to K1=2.0 level, by RE included in Mg-treatment alloy, which are beneficial for K1〈1.2 and compulsory for K1〉1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mg for Px〈1.5 and K1〈1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.
基金the funding support from the 973 Program(2014CB440904)CAS/SAFEA International Partnership Program for Creative Research Teams(Intraplate Mineralization Research Team,KZZD-EW-TZ-20)Chinese NSF projects(41173023,41225012,41490635,41530210)
文摘Several important equilibrium Si isotope fractionation factors among minerals,organic molecules and the H_4SiO_4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth's surface environments.The results reveal that,in comparison to aqueous H_4SiO_4,heavy Si isotopes will be significantly enriched in secondary silicate minerals.On the contrary,quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution.The extent of ^(28)Si-enrichment in hyper-coordinated organosilicon complexes was found to be the largest.In addition,the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer was calculated,and the results support the previous statement that highly ^(28)Sienrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations.With the equilibrium Si isotope fractionation factors provided here,Si isotope distributions in many of Earth's surface systems can be explained.For example,the change of bulk soil δ^(30)Si can be predicted as a concave pattern with respect to the weathering degree,with the minimum value where allophane completely dissolves and the total amount of sesquioxides and poorly crystalline minerals reaches their maximum.When,under equilibrium conditions,the well-crystallized clays start to precipitate from the pore solutions,the bulk soil δ^(30)Si will increase again and reach a constant value.Similarly,the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain the δ^(30)Si variations in the ground water profile.The equilibrium Si isotope fractionations among the quadracoordinated organosilicon complexes and the H_4SiO_4solution may also shed light on the Si isotope distributions in the Si-accumulating plants.
文摘The"SCI impact factor"of Journal of Natural Gas Chemistry(JNGC)is 1.345,according to the"2010 Journal Citation Reports(JCR)Science Edition".Since 2007,JNGC has been included in the Science Citation Index Expanded(SCI-E),the Chemistry Citation Index and the Journal Citation Reports/Science Edition,all published by Thomson Scientific,and this is the second time that an impact factor has been assessed for JNGC by the Journal Citation Reports.
文摘The SCI impact factor of Journal of Natural Gas Chemistry (JNGC) is 1.788, according to the "2013 Journal Citation Reports (JCR) Science Edition". This is the highest SCI impact factor for Journal of Natural Gas Chemistry since the journal was included in the Science Citation Index Expanded (SCIE) in 2007, and it ranks first among chemistry journals in China. Over the past decade, the Journal of Natural Gas Chemistry has become more and more international and has received large numbers of manuscripts concerning energy chemistry. In deed, nowadays enerzy chemistry is becoming one of the hot topics.
文摘The SCI impact factor of Journal of Natural Gas Chemistry (JNGC) is 1.348, according to the "2011 Journal Citation Reports (JCR) Science Edition". This is the highest SCI impact factor for Journal of Natural Gas Chemistry since the journal was included in the Science Citation Index Expanded (SCIE) in 2007, and it ranks first among chemistry journals in China.
基金supported by the Natural Science Research Project of Universities in Anhui Province(Grants No.KJ2020ZD64 and KJ2020A0740)the Anhui Provincial Natural Science Foundation(Grant No.2008085MD122)+3 种基金the Zhejiang Provincial Natural Science Foundation(Grant No.LQ20D010009)the Key Program for Outstanding Young Talents in Higher Education Institutions of Anhui Province(Grant No.gxyqZD2021134)the Research Development Foundation of Suzhou University(Grant No.2021fzjj28)the Doctoral Scientific Reuter Foundation of Suzhou University(Grant No.2019jb15).
文摘Mining activities interfere with the natural groundwater chemical environment,which may lead to hydrogeochemical changes of aquifers and mine water inrush disasters.This study analyzed the hydrochemical compositions of 80 water samples in three aquifers and developed a water source identification model to explore the control factors and potential hydraulic connection of groundwater chemistry in a coal mine.The results showed that the hydrochemical types of the three aquifers were different.The main hydrochemical compositions of the loose-layer,coal-bearing,and limestone aquifers were HCO_(3)·Cl-Na,SO_(4)·HCO_(3)-Na,and SO_(4)-Na·Ca,respectively.The correlation,Unmix,and factor an-alyses showed that the hydrochemical composition of groundwater was controlled by the dissolution of soluble minerals(such as calcite,dolomite,gypsum,and halite)and the weathering of silicate minerals.The factor score plot combined with Q-mode cluster analysis demon-strated no remarkable hydraulic connection among the three aquifers in the study area.The water source identification model effectively identified the source of inrush water.Moreover,the mixing ratio model rationally quantified the contributions of the three aquifers to inrush water.
基金the National Nature Science Foundation of China (39670736).
文摘Objective: To explore the role of growth factor autocrine stimulation in the pathogenesis of human pituitary tumors. Methods: The expression of EGF, TGF-( and EGFR were studied by immunohisto-chemical method on paraffin-embedded sections of 30 cases pituitary tumor. Results: EGFR and its ligands EGF, TGF-( expressed in majority of pituitary tumors. The expression of EGFR and its ligands varied with cells' intensity, density and type. Conclusion: The EGF autocrine stimulating exerted in the pituitary tumor development process, that tyrosine kinases inhibitors may be useful for pituitary tumors treatment.