Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal funct...Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.展开更多
The cost-effective treatment of activated sludge that is generated by refining petroleum is a challenging industrial problem.In this study, semi-continuous stirred tank reactors(CSTRs) containing petroleum refinery ex...The cost-effective treatment of activated sludge that is generated by refining petroleum is a challenging industrial problem.In this study, semi-continuous stirred tank reactors(CSTRs) containing petroleum refinery excess activated sludge(PREAS)were used to comparatively investigate hydrolysis and acidification rates, after the addition of heneicosane(C_(21)H_(44))(R1)and 1-phenylnaphthalene(C16 H12)(R2) to different and individual reactors. Operation of the reactors using a sludge retention time(SRT) of 6 days and a pH of 5.0, resulted in the maintenance of stable biological activity as determined by soluble chemical oxygen demand(SCOD), volatile fatty acids(VFAs) production and oil removal efficiency. The optimum conditions for hydrogen production include a SRT of 8 days, at pH 6.5. Under these conditions, hydrogen production rates in the control containing only PREAS were 1567 mL/L(R0), compared with 1365 mL/L in Rl and 1454 mL/L-PREAS in R2.Coprothermobacter, Fervidobacterium, Caldisericum and Tepidiphilus were the dominant bacterial genera that have the potential to degrade petroleum compounds and generate VFAs. This study has shown that high concentrations of heneicosane and 1-phenylnaphthalene did not inhibit the hydrolytic acidification of PREAS.展开更多
The design and running effect of treatment of wastewater from pharmaceutical intermittent production by iron-carbon(Fe/C)-Fentonhydrolysis acidification-anoxic/aerobic(A/O)process were introduced.The results of co...The design and running effect of treatment of wastewater from pharmaceutical intermittent production by iron-carbon(Fe/C)-Fentonhydrolysis acidification-anoxic/aerobic(A/O)process were introduced.The results of continuous operation showed that when the flow rate of the influent wastewater was 300 m^3/d,after the influent high-concentration wastewater(CODCrand NH4+-N concentration were 35 000 and 1 000 mg/L,respectively)and medium-concentration wastewater(CODCrand NH4+-N concentration were 1 500 and 100 mg/L,respectively)were treated by the process,CODCrand NH4+-N concentration in the effluent decreased to 360-410 and 20-25 mg/L,respectively,and the quality of the effluent could meet the Grade III standard of Integrated Wastewater Discharge Standard(GB 8978-1996).The combined process was proved to be an effective method to treat wastewater from pharmaceutical intermittent production,and its operation was stable.展开更多
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ...The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.展开更多
The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology o...The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis.展开更多
With the rapid development of oil,energy,power and other industries,CO_(2) emissions rise sharply,which will cause a large amount of CO_(2) in the air be absorbed by the ocean and lead to ocean acidification.The growt...With the rapid development of oil,energy,power and other industries,CO_(2) emissions rise sharply,which will cause a large amount of CO_(2) in the air be absorbed by the ocean and lead to ocean acidification.The growth and development of organisms can be seriously affected by acidified seawater.Sepia esculenta is a mollusk with high nutritional and economic value and is widely cultured in offshore waters of China.Larvae are the early life forms of the organism and are more vulnerable to changes in the external environment.Too low pH will lead to some adverse reactions in larvae,which will affect metabolism,immune response and other life activities.In this study,we sequenced the transcriptome of S.esculenta subjected to acidified seawater stress and identified 1072differentially expressed genes(DEGs).The detected atypical expression of DEGs substantiates cellular malformation and translocation in S.esculenta under low pH stimulation.Simultaneously,this also substantiates the notable impact of ocean acidification on mollusks.These DEGs were used for functional enrichment analysis of GO and KEGG,and the top twenty items of the biological process classification in GO terms and 11 KEGG signaling pathways were significantly enriched.Finally,the constructed proteinprotein interaction network(PPI)was used to analyze protein-protein interactions,and 12 key DEGs and 3 hub genes were identified.The reliability of 12 genes was verified by quantitative RT-PCR.A comprehensive analysis of the KEGG signaling pathway and PPI revealed that ocean acidification leads to abnormalities in lipid metabolism in S.esculenta larvae,which can lead to cancer development and metastasis,accompanied by some degree of inflammation.The results of the study will help to further investigate the physiological processes of S.esculenta when stimulated by ocean acidification,and provide a reference to cope with the captive breeding of S.esculenta affected by acidification.展开更多
Ocean acidification(OA),caused by the rising concentration of atmospheric CO_(2),leads to changes in the marine carbonate system.This,in turn,affects the physiological processes of phytoplankton.In response to increas...Ocean acidification(OA),caused by the rising concentration of atmospheric CO_(2),leads to changes in the marine carbonate system.This,in turn,affects the physiological processes of phytoplankton.In response to increased pCO_(2) levels,marine microalgae modulate their physiological responses to meet their energy and metabolic requirements.Nitrogen metabolism is a critical metabolic pathway,directly affecting the growth and reproductive capacity of marine microorganisms.Understanding the molecular mechanisms that regulate nitrogen metabolism in microalgae under OA conditions is therefore crucial.This study aimed to investi-gate how OA affects the expression profiles of key genes in the nitrogen metabolic pathway of the marine diatom Skeletonema costatum.Our findings indicate that OA upregulates key genes involved in the nitrogen metabolic pathway,specifically those related to nitrate assimilation and glutamate metabolism.Moreover,pCO_(2) has been identified as the predominant factor affecting the expression of these genes,with a more significant impact than pH variations in S.costatum.This research not only advances our understanding of the adaptive mechanisms of S.costatum in response to OA but also provides essential data for predicting the ecological consequences of OA on marine diatoms.展开更多
The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a ke...The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a key part of lignocellulose,generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars.In this study,p-TsOH(p-toluenesulfonic acid),DES(Deep eutectic solvent)and CAOSA(cooking with active oxygen and solid alkali)pretreatment ways were used to fraction lignin from bamboo biomass.After CAOSA treatment,the hydrolysis efficiency of the pulp was 95.57%.Moreover,the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system.In this work,the results showed that CAOSA-extracted lignin with lower D(1.31-1.25)had a better adsorption effect on the enzyme protein.p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis.In addition,the presence of-COOHs in lignin could reduce its inhibitory effect on cellulose saccharification.展开更多
Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditi...Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF.展开更多
Hydrogen energy is one of the ideal energy alternatives and the upstream of the hydrogen industry chain is hydrogen production,which can be achieved via the reaction of inorganic materials with water,known as hydrolys...Hydrogen energy is one of the ideal energy alternatives and the upstream of the hydrogen industry chain is hydrogen production,which can be achieved via the reaction of inorganic materials with water,known as hydrolysis.Among inorganic materials,the high hydrogen capacity for hydrolysis of MgH_(2)(15.2 wt%)makes it a promising material for hydrogen production via hydrolysis.However,the dense Mg(OH)_(2) passivation layer will block the reaction between MgH_(2) and the solution,resulting in low hydrogen yield and sluggish hydrolysis kinetics.In this work,the hydrogenyield and hydrogen generation rate of MgH_(2) are considerably enhanced by adding Ti-Zr-Fe-Mn-Cr-V high-entropy alloys(HEAs) for the first time.In particular.the MgH_(2)-3 wt% TiZrFe_(1.5)MnCrV_(0.5)(labelled as MgH_(2)-3 wt% Fe_(1.5)) composite releases 1526.70 mL/g H_(2) within 5 min at 40℃,and the final hydrolysis conversion rate reaches 95.62% within 10 min.The mean hydrogen generation rate of the MgH_(2)-3 wt% Fe_(1.5) composite is 289.16 mL/g/min,which is 2.38 times faster than that of pure MgH_(2).Meanwhile,the activation energy of the MgH_(2)-3 wt% Fe_(1.5) composite is calculated to be 12.53 kJ/mol. The density functional theory(DFT) calculation reveals that the addition of HEAs weakens the Mg-H bonds and accelerates the electron transfer between MgH_(2) and HEAs,Combined with the cocktail effect of HEAs as well as the formation of more interfaces and micro protocells,the hydrolysis performance of MgH_(2) is considerably improved.This work provides an appealing prospect for real-time hydrogen supply and offers a new effective strategy for improving the hydrolysis performance of MgH_(2).展开更多
Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lackin...Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships.展开更多
Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community...Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community uprising in Rathupaswala, a village in Gampaha district, accused a latex glove manufacturing factory of causing groundwater acidity (pH < 4). This study evaluates the spatial and temporal changes in geochemical parameters across three transects in the southern part of Gampaha district to 1) assess the impact of geological formations on groundwater;2) compare temporal variations in groundwater;and 3) explain acidification via a geochemical model. Seventy-two sample locations were tested for pH, electrical conductivity (EC), and anion concentrations (sulphate, nitrate, chloride and fluoride). Depth to the water table and distance from the sea were measured to study variations across sandy, peaty, lateritic, and crystalline aquifers. Results showed pH readings around 7 for sandy and crystalline aquifers, below 7 for peaty aquifers, and below 5 for lateritic aquifers, with significant water table fluctuations near Rathupaswala area. Principal component analysis revealed three principal components (PCs) explaining 86.0% of the variance. PC1 (40.6%) correlated with pH, EC, and sulphate (saltwater intrusion), while PC2 (32.0%) correlated with nitrates and depth to the water table (anthropogenic nutrient pollution). A geochemical transport model indicated a cone of depression recharged by acidic groundwater from peat-soil aquifers, leading to acidic groundwater in Rathupaswala area. Previous attributions of acidic pH to the over-exploitation of groundwater by the latex factory have been reevaluated;the results suggest natural acidification from prolonged water-rock interactions with iron-rich lateritic aquifers. Groundwater pH is influenced by local climate, geology, topography, and drainage systems. It is recommended that similar water-rock interaction conditions may be present throughout the wet zone of Sri Lanka, warranting detailed studies to confirm this hypothesis.展开更多
This study aims to evaluate the development of soil reaction values in 15 key localities of soil Partial Monitoring System from 1994 to 2023, and to identify the most important regional drivers of pH value development...This study aims to evaluate the development of soil reaction values in 15 key localities of soil Partial Monitoring System from 1994 to 2023, and to identify the most important regional drivers of pH value development. Soil samples were collected from the depth 0 - 0.10 m yearly in the spring (5 samples from each locality). In the dry soil, samples were determined actively and exchanged soil reaction. The most significant negative changes (decreases of soil reaction) were determined in Haplic Stagnosols group and Cambisols group. The pH value in topsoil is primarily controlled by soil type and soil substrate, soil management and land use, and to a lesser extent by climatic region.展开更多
The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O...The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O required to ensure complete hydrolysis are two key challenges for the MgH_(2) hydrolysis systems.Now,a low-cost method is reported to synthesize MgH_(2)@Mg(BH_(4))_(2) composite via ball-milling MgH_(2) with cheap and widely available B_(2)O_(3)(or B(OH)_(3)).By adding small amounts of B_(2)O_(3),the in-situ formed Mg(BH_(4))_(2) could significantly promote the hydrolysis of MgH_(2).In particular,the MgH_(2)–10 wt%B_(2)O_(3) composite releases 1330.7 mL·g^(−1) H_(2)(close to 80%theoretical hydrogen generation H_(2))in H_(2)O and 1520.4 mL·g^(−1) H_(2)(about 95%)in 0.5 M MgCl_(2) in 60 min at 26℃ with hydrolysis rate of 736.9 mL·g^(−1)·min^(−1) and 960.9 mL·g^(−1)·min^(−1) H_(2) during the first minute of the hydrolysis,respectively.In addition,the MgCl_(2) solution allows repeated use by filtering and exhibits high cycle stability(20 cycles),therefore leading to much reduced capacity loss caused by the excess H_(2)O.We show that by introducing B_(2)O_(3) and recycling the 0.5 M MgCl_(2) solution,the system hydrogen capacity can approach 5.9 wt%,providing a promising hydrogen generation scheme to supply hydrogen to the fuel cells.展开更多
Based on soil monitoring data in nine sites of Jinhu, Xuyi and Hongze counties on the south bank of Hongze Lake from 1982 to 2013, changes in soil p H, total nitrogen(TN) content, available phosphorus content, organ...Based on soil monitoring data in nine sites of Jinhu, Xuyi and Hongze counties on the south bank of Hongze Lake from 1982 to 2013, changes in soil p H, total nitrogen(TN) content, available phosphorus content, organic matter(OM)content and cation exchange capacity(CEC) were analyzed. The results show that due to excessive application of chemical fertilizer in soil on the south bank of Hongze Lake, soil p H reduced by about 2 on average, while TN content and available phosphorus content in soil increased by more than one time and 2-5 times respectively. Soil acidification caused by agricultural production was very serious. In addition, low soil p H resulted in serious loss of soil cation, so that soil CEC in2013 accounted for less than 50% of that in 1982 and affected mineral nutrient metabolism of crops. Therefore, application of calcium, potassium and trace-element fertilizer should be paid more attention to during agricultural production in future.展开更多
[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam expl...[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam explosion and dilute acid hydrolysis as experimental materials,we measured and analyzed the effects of different treatments and particle size of maize stalk were analyzed. [Result] The optimal fermentative biohydrogen production was found under following parameters:pretreatment of 0.8% dilute H2SO4 following steam explosion,particle size of maize stalk of 0.425-0.850 mm,liquid-solid ratio [0.8% H2SO4 (M):stalk (W)] of 10:1. [Conclusion] Post steam explosion,dilute 0.8% dilute H2SO4 intensified hydrolysis on maize stalk could produce fermentative biohydrogen production capacity.展开更多
Effect of soil acidification on yield of late rice was studied and acid resistance of late rice varieties were compared with 23 late rice varieties as materials in Changsha County, Hunan Province. The results indicate...Effect of soil acidification on yield of late rice was studied and acid resistance of late rice varieties were compared with 23 late rice varieties as materials in Changsha County, Hunan Province. The results indicated that the difference in yield among varieties was obvious, yield in common field was among 5 226.6-9 202.1kg/hm^2, and yield in acidified field was among 3 643.2-7 714. 8 kg/hm^2. Compared with common field, yield of Yueyou 6135, Huayou 18, Jinyou 284 and Ⅱyou 46 increased by 3.24%-26.33% in acidified field, while yield of other varieties decreased by 2.04%-56.79% in acidified field. According to acidification sensitivity, Wufengyou T025, Jinchuyou No.148, Yueyou No.6135, Shenyou No.9586, Xiangfengyou No.103,Zhongyou No.288, Nongxiang No.18, Shanyou No.432, Ⅱ you No.6, and Zhong 9A/R10402 were sensitive to soil acidification; Wuyou No.308, Zhunliangyou No.608,Fengyuanyou No.227, Fengyou No.1167, Fengyuanyou No.299, T you No.272, and Zhong 9A/R9963 were moderately sensitive to soil acidification; Yueyou No.9113,Jinyou No.284, Shenyou No.9588, Huayou No.18, Ⅱ you No.46 and Ⅱ you No.3027 were slightly sensitive to soil acidification展开更多
Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structu...Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structure. Annealed at 500 ℃, nanometer TiO 2 with a specific surface area of 101.39 m 2 ·g -1 and a grain size about 10 nm were obtained(pH=5); and with a specific surface area of 95.48 m 2 ·g -1 and a grain size about 30 nm were obtained(pH=10). The research indicated that crystal phase transformation of rutile at 750 ℃made great promotion in grain size growth.展开更多
The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional ...The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional transition state theory (CTST). The mechanism and rate constant of the five different reaction paths are consid- ered corresponding to HCOCHO+H2O, HCOCHO+H2O… H2O, HCOCHO… H2O+H2O, HCOCHO+H2O… H2SO4 and HCOCHO… H2O+H2SOa. Results show that H2SO4 has a strong catalytic ability, which can significantly reduce the energy barrier for the hydration reaction of glyoxal. The energy barrier of hydrolysis of glyoxal in gas phase is lowered to 7.08 kcal/mol from 37.15 kcal/mol relative to pre-reactive complexes at the CCSD(T)/6- 311++G(3df, 3pd)//M06-2X/6-311++G(3df, 3pd) level of theory. The rate constant of the H2SO4 catalyzed hydrolysis of glyoxal is 1.34×10-11 cm3/(molecule.s), about 1013 higher than that involving catalysis by an equal number of water molecules, and is greater than the reaction rate of glyoxal reaction with OH radicals of 1.10×10-11 cm3/(molecule·s) at the room temperature, indicating that the gas phase hydrolysis of glyoxal of H2SO4 catalyst is feasible and could compete with the reaction glyoxal+OH under certain atmospheric condi- tions. This study may provide useful information on understanding the mechanistic features of inorganic acid-catalyzed hydration of glyoxal for the formation of oligomer.展开更多
The plasma membrane vesicles were purified from soybean (Glycine max L.) hypocotyls by two_phase partitioning methods. The stimulatory effects of K + on the coupling between ATP hydrolysis and proton transport by th...The plasma membrane vesicles were purified from soybean (Glycine max L.) hypocotyls by two_phase partitioning methods. The stimulatory effects of K + on the coupling between ATP hydrolysis and proton transport by the plasma membrane H +_ATPase were studied. The results showed that the proton transport activity was increased by 850% in the presence of 100 mmol/L KCl, while ATP hydrolytic activity was only increased by 28.2%. Kinetic studies showed that K m of ATP hydrolysis decreased from 1.14 to 0.7 mmol/L, while V max of ATP hydrolysis increased from 285.7 to 344.8 nmol Pi·mg -1 protein·min -1 in the presence of KCl. Experiments showed that the optimum pH was 6.5 and 6.0 in the presence and absence of KCl, respectively. Further studies revealed that K + could promote the inhibitory effects of hydroxylamines and vanadates on the ATP hydrolytic activity. The above results suggested that K + could regulate the coupling between ATP hydrolysis and proton transport of the plasma membrane H +_ATPase through modulating the structure and function of the kinase and phosphatase domains of the plasma membrane H +_ATPase.展开更多
基金supported by the National Natural Science Foundation of China,No.82201582(to QT)Scientific and Technological Research Program of Chongqing Municipal Education Commission,No.KJQN202200457(to QT)+3 种基金General Project of Changqing Natural Science Foundation,No.cstc2021jcyjmsxmX0442(to ZL)CQMU Program for Youth Innovation in Future Medicine,No.W0044(to ZD and GH)Direct Research Project for PhD of Chongqing,No.CSTB2022BSXM-JCX0051(to ZL)the Project of the Top-Notch Talent Cultivation Program For the Graduate Students of Chongqing Medical University,No.BJRC202310(to CG)。
文摘Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.
基金financially supported by Natural Science Foundation of China (No. 21776307)Science and Technology Major Project of China (No. 2016zx05040)Science Foundation of China University of Petroleum, Beijing (No. 2462018BJB001)
文摘The cost-effective treatment of activated sludge that is generated by refining petroleum is a challenging industrial problem.In this study, semi-continuous stirred tank reactors(CSTRs) containing petroleum refinery excess activated sludge(PREAS)were used to comparatively investigate hydrolysis and acidification rates, after the addition of heneicosane(C_(21)H_(44))(R1)and 1-phenylnaphthalene(C16 H12)(R2) to different and individual reactors. Operation of the reactors using a sludge retention time(SRT) of 6 days and a pH of 5.0, resulted in the maintenance of stable biological activity as determined by soluble chemical oxygen demand(SCOD), volatile fatty acids(VFAs) production and oil removal efficiency. The optimum conditions for hydrogen production include a SRT of 8 days, at pH 6.5. Under these conditions, hydrogen production rates in the control containing only PREAS were 1567 mL/L(R0), compared with 1365 mL/L in Rl and 1454 mL/L-PREAS in R2.Coprothermobacter, Fervidobacterium, Caldisericum and Tepidiphilus were the dominant bacterial genera that have the potential to degrade petroleum compounds and generate VFAs. This study has shown that high concentrations of heneicosane and 1-phenylnaphthalene did not inhibit the hydrolytic acidification of PREAS.
文摘The design and running effect of treatment of wastewater from pharmaceutical intermittent production by iron-carbon(Fe/C)-Fentonhydrolysis acidification-anoxic/aerobic(A/O)process were introduced.The results of continuous operation showed that when the flow rate of the influent wastewater was 300 m^3/d,after the influent high-concentration wastewater(CODCrand NH4+-N concentration were 35 000 and 1 000 mg/L,respectively)and medium-concentration wastewater(CODCrand NH4+-N concentration were 1 500 and 100 mg/L,respectively)were treated by the process,CODCrand NH4+-N concentration in the effluent decreased to 360-410 and 20-25 mg/L,respectively,and the quality of the effluent could meet the Grade III standard of Integrated Wastewater Discharge Standard(GB 8978-1996).The combined process was proved to be an effective method to treat wastewater from pharmaceutical intermittent production,and its operation was stable.
基金supported by the National Natural Science Foundation of China(22108238,21878259)the Zhejiang Provincial Natural Science Foundation of China(LR18B060001)+5 种基金Anhui Provincial Natural Science Founda-tion(1908085QB68)the Natural Science Foundation of the Anhui Higher Education Institutions of China(KJ2020A0275)Major Science and Technology Project of Anhui Province(201903a05020055)Foundation of Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology(ZJKL-ACEMT-1802)China Postdoctoral Science Foundation(2019M662060,2020T130580)Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology(BM2012110).
文摘The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.
基金supported by Fundamental Research Program of Shanxi Province,China(202203021212245)the Science and Technology Achievement Transformation Guidance Special Program of Shanxi Province,China(202104021301052)the Patent Transformation Program of Shanxi Province,China(202306013).
文摘The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis.
基金funded by the Ministry of Agriculture of the People’s Republic of China (No.CARS-49)。
文摘With the rapid development of oil,energy,power and other industries,CO_(2) emissions rise sharply,which will cause a large amount of CO_(2) in the air be absorbed by the ocean and lead to ocean acidification.The growth and development of organisms can be seriously affected by acidified seawater.Sepia esculenta is a mollusk with high nutritional and economic value and is widely cultured in offshore waters of China.Larvae are the early life forms of the organism and are more vulnerable to changes in the external environment.Too low pH will lead to some adverse reactions in larvae,which will affect metabolism,immune response and other life activities.In this study,we sequenced the transcriptome of S.esculenta subjected to acidified seawater stress and identified 1072differentially expressed genes(DEGs).The detected atypical expression of DEGs substantiates cellular malformation and translocation in S.esculenta under low pH stimulation.Simultaneously,this also substantiates the notable impact of ocean acidification on mollusks.These DEGs were used for functional enrichment analysis of GO and KEGG,and the top twenty items of the biological process classification in GO terms and 11 KEGG signaling pathways were significantly enriched.Finally,the constructed proteinprotein interaction network(PPI)was used to analyze protein-protein interactions,and 12 key DEGs and 3 hub genes were identified.The reliability of 12 genes was verified by quantitative RT-PCR.A comprehensive analysis of the KEGG signaling pathway and PPI revealed that ocean acidification leads to abnormalities in lipid metabolism in S.esculenta larvae,which can lead to cancer development and metastasis,accompanied by some degree of inflammation.The results of the study will help to further investigate the physiological processes of S.esculenta when stimulated by ocean acidification,and provide a reference to cope with the captive breeding of S.esculenta affected by acidification.
基金supported by the Scientific and Technological Innovation Project of the Laoshan Laboratory(No.LSKJ202203700)the National Key Research and Development Program of China(No.2022YFC3105202)the National Natural Science Foundation of China(No.41976133).
文摘Ocean acidification(OA),caused by the rising concentration of atmospheric CO_(2),leads to changes in the marine carbonate system.This,in turn,affects the physiological processes of phytoplankton.In response to increased pCO_(2) levels,marine microalgae modulate their physiological responses to meet their energy and metabolic requirements.Nitrogen metabolism is a critical metabolic pathway,directly affecting the growth and reproductive capacity of marine microorganisms.Understanding the molecular mechanisms that regulate nitrogen metabolism in microalgae under OA conditions is therefore crucial.This study aimed to investi-gate how OA affects the expression profiles of key genes in the nitrogen metabolic pathway of the marine diatom Skeletonema costatum.Our findings indicate that OA upregulates key genes involved in the nitrogen metabolic pathway,specifically those related to nitrate assimilation and glutamate metabolism.Moreover,pCO_(2) has been identified as the predominant factor affecting the expression of these genes,with a more significant impact than pH variations in S.costatum.This research not only advances our understanding of the adaptive mechanisms of S.costatum in response to OA but also provides essential data for predicting the ecological consequences of OA on marine diatoms.
基金financially supported by the National Key R&D Program of China(No.2021YFC2101604)National Natural Science Foundation of China(No.22278339,21978248)Fujian Provincial Key Science and Technology Program of China(No.2022YZ037013)。
文摘The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a key part of lignocellulose,generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars.In this study,p-TsOH(p-toluenesulfonic acid),DES(Deep eutectic solvent)and CAOSA(cooking with active oxygen and solid alkali)pretreatment ways were used to fraction lignin from bamboo biomass.After CAOSA treatment,the hydrolysis efficiency of the pulp was 95.57%.Moreover,the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system.In this work,the results showed that CAOSA-extracted lignin with lower D(1.31-1.25)had a better adsorption effect on the enzyme protein.p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis.In addition,the presence of-COOHs in lignin could reduce its inhibitory effect on cellulose saccharification.
基金supported by the National Natural Science Foundation of China(No.21774139)China,Key Research and Development Program of Shanxi Province,China(No,202102040201009)special fund of Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology and the Fund for Shanxi“1331 Project”.Thanks to Ningbo Kejiang Culture Sci.&Tech.Development Co.,Ltd.for the help in schematic drawing。
文摘Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF.
基金financed by the National Key Research and Development Program of China [2022YFB3803703]the National Natural Science Foundation of China [52071141, 52271212, 52201250, 51771056]the Interdisciplinary Innovation Program of North China Electric Power University [XM2112355]。
文摘Hydrogen energy is one of the ideal energy alternatives and the upstream of the hydrogen industry chain is hydrogen production,which can be achieved via the reaction of inorganic materials with water,known as hydrolysis.Among inorganic materials,the high hydrogen capacity for hydrolysis of MgH_(2)(15.2 wt%)makes it a promising material for hydrogen production via hydrolysis.However,the dense Mg(OH)_(2) passivation layer will block the reaction between MgH_(2) and the solution,resulting in low hydrogen yield and sluggish hydrolysis kinetics.In this work,the hydrogenyield and hydrogen generation rate of MgH_(2) are considerably enhanced by adding Ti-Zr-Fe-Mn-Cr-V high-entropy alloys(HEAs) for the first time.In particular.the MgH_(2)-3 wt% TiZrFe_(1.5)MnCrV_(0.5)(labelled as MgH_(2)-3 wt% Fe_(1.5)) composite releases 1526.70 mL/g H_(2) within 5 min at 40℃,and the final hydrolysis conversion rate reaches 95.62% within 10 min.The mean hydrogen generation rate of the MgH_(2)-3 wt% Fe_(1.5) composite is 289.16 mL/g/min,which is 2.38 times faster than that of pure MgH_(2).Meanwhile,the activation energy of the MgH_(2)-3 wt% Fe_(1.5) composite is calculated to be 12.53 kJ/mol. The density functional theory(DFT) calculation reveals that the addition of HEAs weakens the Mg-H bonds and accelerates the electron transfer between MgH_(2) and HEAs,Combined with the cocktail effect of HEAs as well as the formation of more interfaces and micro protocells,the hydrolysis performance of MgH_(2) is considerably improved.This work provides an appealing prospect for real-time hydrogen supply and offers a new effective strategy for improving the hydrolysis performance of MgH_(2).
基金financially supported by the third xinjiang scientific expedition program (grant no.2022xjkk0901)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDA2006030102)the National Natural Sciences Foundation of China(No.42171068 and No.42330503)。
文摘Background:Soil acidifcationn caused by anthropogenic activities may aft soil biochemical cydling,bidiversity,productivity,and multiple eosystem-related functions in drylands.However,to date,such information is lacking to support this hypothesis.Methods Based on a transect survey of 78 naturally assembled shrub communities,we caloulated acid deposition flux in Northwest China and evaluated its likely ecological ffets by testing three altemnative hypotheses,namely:.nidche complementarity,mass ratio,and vegetation quantity hypotheses Rao's quadratic entopy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects,respectively.Resulbs:We observed that in the past four decades,the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion,whereas changes in the calium carbonate content and pH of soil were not significant.Adid deposition primani ly increased the aboweground biomass and shrub density in shrublands but had no sigmificant effect on shrub richness and ecasystem multifunctionality(EMF),indicating that acid deposition had positive but weak ecological effects on dryland ecosystems.Community wd ghted mean of functional traits(representing the mass ratio hypothesis)correlated negatively with EMF,whereas both Rao's quadratic entropy(representing the niche complementarity hypothesis)and aboveground biomass(representing the vegetation quantity hypothesis)correlated positively but insignifcantly with EMF.These biodiversity-EMF relationships highlight the fragility and instability of drylands relative to forest ecasystems.Concuions:The findings from this study serve as important reference points to understand the ris of soil acidification in arid regions and its impacts on biodiversity-EMF relationships.
文摘Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community uprising in Rathupaswala, a village in Gampaha district, accused a latex glove manufacturing factory of causing groundwater acidity (pH < 4). This study evaluates the spatial and temporal changes in geochemical parameters across three transects in the southern part of Gampaha district to 1) assess the impact of geological formations on groundwater;2) compare temporal variations in groundwater;and 3) explain acidification via a geochemical model. Seventy-two sample locations were tested for pH, electrical conductivity (EC), and anion concentrations (sulphate, nitrate, chloride and fluoride). Depth to the water table and distance from the sea were measured to study variations across sandy, peaty, lateritic, and crystalline aquifers. Results showed pH readings around 7 for sandy and crystalline aquifers, below 7 for peaty aquifers, and below 5 for lateritic aquifers, with significant water table fluctuations near Rathupaswala area. Principal component analysis revealed three principal components (PCs) explaining 86.0% of the variance. PC1 (40.6%) correlated with pH, EC, and sulphate (saltwater intrusion), while PC2 (32.0%) correlated with nitrates and depth to the water table (anthropogenic nutrient pollution). A geochemical transport model indicated a cone of depression recharged by acidic groundwater from peat-soil aquifers, leading to acidic groundwater in Rathupaswala area. Previous attributions of acidic pH to the over-exploitation of groundwater by the latex factory have been reevaluated;the results suggest natural acidification from prolonged water-rock interactions with iron-rich lateritic aquifers. Groundwater pH is influenced by local climate, geology, topography, and drainage systems. It is recommended that similar water-rock interaction conditions may be present throughout the wet zone of Sri Lanka, warranting detailed studies to confirm this hypothesis.
文摘This study aims to evaluate the development of soil reaction values in 15 key localities of soil Partial Monitoring System from 1994 to 2023, and to identify the most important regional drivers of pH value development. Soil samples were collected from the depth 0 - 0.10 m yearly in the spring (5 samples from each locality). In the dry soil, samples were determined actively and exchanged soil reaction. The most significant negative changes (decreases of soil reaction) were determined in Haplic Stagnosols group and Cambisols group. The pH value in topsoil is primarily controlled by soil type and soil substrate, soil management and land use, and to a lesser extent by climatic region.
基金supported by the Basic and Applied Basic Research Foundation of Guangdong Province(No.2022A1515011832 and 2021A1515110676)supported by GDAS’Project of Science and Technology Development(2022GDASZH-2022010104,2022GDASZH-2022030604-04).
文摘The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O required to ensure complete hydrolysis are two key challenges for the MgH_(2) hydrolysis systems.Now,a low-cost method is reported to synthesize MgH_(2)@Mg(BH_(4))_(2) composite via ball-milling MgH_(2) with cheap and widely available B_(2)O_(3)(or B(OH)_(3)).By adding small amounts of B_(2)O_(3),the in-situ formed Mg(BH_(4))_(2) could significantly promote the hydrolysis of MgH_(2).In particular,the MgH_(2)–10 wt%B_(2)O_(3) composite releases 1330.7 mL·g^(−1) H_(2)(close to 80%theoretical hydrogen generation H_(2))in H_(2)O and 1520.4 mL·g^(−1) H_(2)(about 95%)in 0.5 M MgCl_(2) in 60 min at 26℃ with hydrolysis rate of 736.9 mL·g^(−1)·min^(−1) and 960.9 mL·g^(−1)·min^(−1) H_(2) during the first minute of the hydrolysis,respectively.In addition,the MgCl_(2) solution allows repeated use by filtering and exhibits high cycle stability(20 cycles),therefore leading to much reduced capacity loss caused by the excess H_(2)O.We show that by introducing B_(2)O_(3) and recycling the 0.5 M MgCl_(2) solution,the system hydrogen capacity can approach 5.9 wt%,providing a promising hydrogen generation scheme to supply hydrogen to the fuel cells.
基金Supported by the Surface Project of Natural Science Research for Higher Education in Jiangsu Province(13KJB210001)Innovation Planning Project for University Students in Jiangsu Province(201310323040Y)Key Technology R&D Program of Huai'an City,Jiangsu Province(SN13049)~~
文摘Based on soil monitoring data in nine sites of Jinhu, Xuyi and Hongze counties on the south bank of Hongze Lake from 1982 to 2013, changes in soil p H, total nitrogen(TN) content, available phosphorus content, organic matter(OM)content and cation exchange capacity(CEC) were analyzed. The results show that due to excessive application of chemical fertilizer in soil on the south bank of Hongze Lake, soil p H reduced by about 2 on average, while TN content and available phosphorus content in soil increased by more than one time and 2-5 times respectively. Soil acidification caused by agricultural production was very serious. In addition, low soil p H resulted in serious loss of soil cation, so that soil CEC in2013 accounted for less than 50% of that in 1982 and affected mineral nutrient metabolism of crops. Therefore, application of calcium, potassium and trace-element fertilizer should be paid more attention to during agricultural production in future.
基金Supported by National Basic Research Program of China(2006CB708407 2009CB220005)+2 种基金National Natural Science Foun-dation of China (90610001 20871106)Program of 211 Projectfor Zhengzhou University from Ministry of Education~~
文摘[Objective] This study was to explore the effects of dilute acid hydrolysis on fermentative biohydrogen production capacity of maize stalk. [Method] Using maize stalks subjected to mechanical disintegration,steam explosion and dilute acid hydrolysis as experimental materials,we measured and analyzed the effects of different treatments and particle size of maize stalk were analyzed. [Result] The optimal fermentative biohydrogen production was found under following parameters:pretreatment of 0.8% dilute H2SO4 following steam explosion,particle size of maize stalk of 0.425-0.850 mm,liquid-solid ratio [0.8% H2SO4 (M):stalk (W)] of 10:1. [Conclusion] Post steam explosion,dilute 0.8% dilute H2SO4 intensified hydrolysis on maize stalk could produce fermentative biohydrogen production capacity.
基金Supported by National Nature Science Foundation of China(31171494)Projects in the National Science&Technology Pillar Program(2011BAD16B01,2012BAD04B10-01,2013BAD07B11-02)~~
文摘Effect of soil acidification on yield of late rice was studied and acid resistance of late rice varieties were compared with 23 late rice varieties as materials in Changsha County, Hunan Province. The results indicated that the difference in yield among varieties was obvious, yield in common field was among 5 226.6-9 202.1kg/hm^2, and yield in acidified field was among 3 643.2-7 714. 8 kg/hm^2. Compared with common field, yield of Yueyou 6135, Huayou 18, Jinyou 284 and Ⅱyou 46 increased by 3.24%-26.33% in acidified field, while yield of other varieties decreased by 2.04%-56.79% in acidified field. According to acidification sensitivity, Wufengyou T025, Jinchuyou No.148, Yueyou No.6135, Shenyou No.9586, Xiangfengyou No.103,Zhongyou No.288, Nongxiang No.18, Shanyou No.432, Ⅱ you No.6, and Zhong 9A/R10402 were sensitive to soil acidification; Wuyou No.308, Zhunliangyou No.608,Fengyuanyou No.227, Fengyou No.1167, Fengyuanyou No.299, T you No.272, and Zhong 9A/R9963 were moderately sensitive to soil acidification; Yueyou No.9113,Jinyou No.284, Shenyou No.9588, Huayou No.18, Ⅱ you No.46 and Ⅱ you No.3027 were slightly sensitive to soil acidification
文摘Nanometer TiO 2 powders were obtained from TiOSO 4 and studied by XRD, TEM and BET. The result indicated that pH and heat treatment temperature have great effects on their grain size and crystal phase structure. Annealed at 500 ℃, nanometer TiO 2 with a specific surface area of 101.39 m 2 ·g -1 and a grain size about 10 nm were obtained(pH=5); and with a specific surface area of 95.48 m 2 ·g -1 and a grain size about 30 nm were obtained(pH=10). The research indicated that crystal phase transformation of rutile at 750 ℃made great promotion in grain size growth.
文摘The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional transition state theory (CTST). The mechanism and rate constant of the five different reaction paths are consid- ered corresponding to HCOCHO+H2O, HCOCHO+H2O… H2O, HCOCHO… H2O+H2O, HCOCHO+H2O… H2SO4 and HCOCHO… H2O+H2SOa. Results show that H2SO4 has a strong catalytic ability, which can significantly reduce the energy barrier for the hydration reaction of glyoxal. The energy barrier of hydrolysis of glyoxal in gas phase is lowered to 7.08 kcal/mol from 37.15 kcal/mol relative to pre-reactive complexes at the CCSD(T)/6- 311++G(3df, 3pd)//M06-2X/6-311++G(3df, 3pd) level of theory. The rate constant of the H2SO4 catalyzed hydrolysis of glyoxal is 1.34×10-11 cm3/(molecule.s), about 1013 higher than that involving catalysis by an equal number of water molecules, and is greater than the reaction rate of glyoxal reaction with OH radicals of 1.10×10-11 cm3/(molecule·s) at the room temperature, indicating that the gas phase hydrolysis of glyoxal of H2SO4 catalyst is feasible and could compete with the reaction glyoxal+OH under certain atmospheric condi- tions. This study may provide useful information on understanding the mechanistic features of inorganic acid-catalyzed hydration of glyoxal for the formation of oligomer.
文摘The plasma membrane vesicles were purified from soybean (Glycine max L.) hypocotyls by two_phase partitioning methods. The stimulatory effects of K + on the coupling between ATP hydrolysis and proton transport by the plasma membrane H +_ATPase were studied. The results showed that the proton transport activity was increased by 850% in the presence of 100 mmol/L KCl, while ATP hydrolytic activity was only increased by 28.2%. Kinetic studies showed that K m of ATP hydrolysis decreased from 1.14 to 0.7 mmol/L, while V max of ATP hydrolysis increased from 285.7 to 344.8 nmol Pi·mg -1 protein·min -1 in the presence of KCl. Experiments showed that the optimum pH was 6.5 and 6.0 in the presence and absence of KCl, respectively. Further studies revealed that K + could promote the inhibitory effects of hydroxylamines and vanadates on the ATP hydrolytic activity. The above results suggested that K + could regulate the coupling between ATP hydrolysis and proton transport of the plasma membrane H +_ATPase through modulating the structure and function of the kinase and phosphatase domains of the plasma membrane H +_ATPase.