A novel and convenient hydrolysis and oxidation method was first used in preparation of carbon contained Y2O3 phosphor powders. The alloy was hydrolyzed in deionized water and the obtained Y(OH)3 powders were heat t...A novel and convenient hydrolysis and oxidation method was first used in preparation of carbon contained Y2O3 phosphor powders. The alloy was hydrolyzed in deionized water and the obtained Y(OH)3 powders were heat treated in air atmosphere. The final products - Y2O3 powders were micron clusters which were aggregated by hundreds of nanoparticles with the size of about 5 nm. The chemical composition, structural and morphological features of the samples were characterized by means of X-ray powder diffraction (XRD) analysis, transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and carbon sulfur analyzer. The obtained powders showed good bluish-white photoluminescence (PL) emissions (ranging from 430 to 600 nm, peaking at 468 nm and 578 nm) under the xenon light excitation. The luminescent mechanism was ascribed to the carbon impurities in the Y2O3 host.展开更多
基金Project supported by Shanghai Science and Technology Commission(11nm0501600)
文摘A novel and convenient hydrolysis and oxidation method was first used in preparation of carbon contained Y2O3 phosphor powders. The alloy was hydrolyzed in deionized water and the obtained Y(OH)3 powders were heat treated in air atmosphere. The final products - Y2O3 powders were micron clusters which were aggregated by hundreds of nanoparticles with the size of about 5 nm. The chemical composition, structural and morphological features of the samples were characterized by means of X-ray powder diffraction (XRD) analysis, transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and carbon sulfur analyzer. The obtained powders showed good bluish-white photoluminescence (PL) emissions (ranging from 430 to 600 nm, peaking at 468 nm and 578 nm) under the xenon light excitation. The luminescent mechanism was ascribed to the carbon impurities in the Y2O3 host.