期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Cellulose Nanofibrous Membranes Modified with Phenyl Glycidyl Ether for Efficient Adsorption of Bovine Serum Albumin 被引量:3
1
作者 Lihuan Wang Qiuxia Fu +2 位作者 Jianyong Yu Lifang Liu Bin Ding 《Advanced Fiber Materials》 CAS 2019年第3期188-196,共9页
Hydrophobic interaction chromatography(HIC)as an indispensable method for protein purification has attracted considerable attentions of researchers as well as biopharmaceutical industries.However,the low binding capac... Hydrophobic interaction chromatography(HIC)as an indispensable method for protein purification has attracted considerable attentions of researchers as well as biopharmaceutical industries.However,the low binding capacity and slow adsorption rate of the currently available HIC media lead to a little supply and high price of the highly purified proteins.Herein,nanofibrous membranes with hydrophobic binding sites were developed for HIC by directly coupling phenyl glycidyl ether on the hydrolyzed cellulose acetate nanofiber membrane(cellulose-phenyl NFM).Scanning electron microscope(SEM),water contact angle(WCA),Fourier transform infrared(FTIR),thermogravimetric analysis(TGA),Brunauer-Emmett-Teller(BET)surface area analysis and capillary flow porometer(CFP)were applied to evaluate the physically and chemically structural transformation.The obtained cellulose-phenyl NFMs showed a proper hydrophilcity(WCA=37°),a relatively high BET surface area(3.6 times the surface area of commercial fibrous membranes),and tortuous-channel structure with through-hole size in the range of 0.25-1.2μm,which led to a little non-specificity adsorption,high bovine serum albumin adsorption capacity of 118 mg g^(−1),fast adsorption process within 12 h,good long-term stability and reusability.Moreover,compared with traditional modification methods which always include activation and graft two steps,direct coupling method is more efficient for HIC media fabrication.Therefore,cellulose-phenyl NFMs with outstanding protein adsorption performance could be a kind of promising candidate for HIC. 展开更多
关键词 Cellulose nanofibers Phenyl glycidyl ether Protein adsorption hydrophobic interaction chromatography
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部