Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution...Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.展开更多
Enhanced oil recovery(EOR)by means of polymer flooding is an important technology for the strategic development of offshore oilfields in China.Hydrophobically associating polyacrylamide(HAPAM)has been recently propose...Enhanced oil recovery(EOR)by means of polymer flooding is an important technology for the strategic development of offshore oilfields in China.Hydrophobically associating polyacrylamide(HAPAM)has been recently proposed as a new flooding agent.The solubility of HAPAM is low,which is the bottleneck for further improving the oil recovery through polymer flooding in offshore oilfield.Stirred tanks have been used on offshore platforms to enhance HAPAM dissolving.But there is little literature on the study of HAPAM dissolving characteristics in stirred tanks.In this paper,effects of temperature,salinity,stirring speed,impeller type and stirring method on the dissolution of HAPAM are reported.The experimental results manifest that the dissolving rate of HAPAM increases with temperature and stirring speed,but the viscosity of the polymer solution decreases.There is an optimal range of salinity for polymer dissolving.Combining the operation mode of up-pumping with varying stirring speed,hydrofoil impeller can accelerate the dissolution of HAPAM and maintain a high solution viscosity.展开更多
A temperature-resistant, salt-tolerant polyacrylamide, hydrophobically associating polymer (HAP), was synthesized in the State Key Laboratory of Heavy Oil Processing. The rheological behavior of HAP solution was inv...A temperature-resistant, salt-tolerant polyacrylamide, hydrophobically associating polymer (HAP), was synthesized in the State Key Laboratory of Heavy Oil Processing. The rheological behavior of HAP solution was investigated by means of flow experiments in porous media and by using a HAAKE RS600 rheometer. The results of Nuclepore membrane filtration showed that filtration time increased sharply when the critical association concentration was reached. Shear rate had a greater impact on viscosity and shear stress with increasing HAP concentration. The HAP solution with a concentration of 100 mg/L (salinity 32,868 mg/L) exhibited negative thixotropy. However, at the same salinity the HAP solution showed thixotropy and its viscosity became greater when the polymer concentration increased to 1,500 mg/L. The flow experiments in cemented core samples indicated that the resistance factor and residual resistance factor of the HAP solution were 31.8 and 12 when polymer concentration and salinity were 1,500 mg/L, 32,868 mg/L at 85℃ respectively, which is favorable for flooding application. Such factors of partially hydrolyzed polyaerylamide 3530S were merely 3.14 and 1.71, so it could not be applied to polymer flooding in the oilfield with high temperature and high salinity.展开更多
In this article, the synthesis and characterization of a novel fluoromonomer and its copolymer with acrylamide is reported. 2-perfluoroamyl-4-hydroxylquinoline 2 was synthesized from ethyl 2, 2-dihydroperfluoroheptano...In this article, the synthesis and characterization of a novel fluoromonomer and its copolymer with acrylamide is reported. 2-perfluoroamyl-4-hydroxylquinoline 2 was synthesized from ethyl 2, 2-dihydroperfluoroheptanoate in high yields. The monomer 4 was then synthesized from 2 in two steps readily in high yields. Synthesis and characterization of copolymers of acrylamide (AM) and the fluoromonomer were investigated. The composition and intrinsic viscosity of these copolymers were studied. It was found that the rheological properties of aqueous solutions of polyacrylamide were modified significantly when a small proportion of the fluoromonomer 4 was incorporated on investigating the viscosity-concentration profiles, pseudoplasticity of these solutions and the effect of the presence of surfactant. These results could be explained by the hydrophobic association of the fluorocarbon segments in the aqueous solutions of these copolymers.展开更多
A series of hydrophobically associating polyacrylamides modified by small amounts (〈 3 mol%) of a self- associative cationic monomer 4-(2-(acryloyloxy) ethoxy) benzyl tri-ethyl ammonium bromide (AEBA) as hydr...A series of hydrophobically associating polyacrylamides modified by small amounts (〈 3 mol%) of a self- associative cationic monomer 4-(2-(acryloyloxy) ethoxy) benzyl tri-ethyl ammonium bromide (AEBA) as hydrophobe were synthesized by radical copolymerization in aqueous solutions without external surfactants. The resulting eopolymers containing a multiblock structure exhibited a high tendency for hydrophobic association and a high thickening capacity. Solution properties and aggregation structures were investigated by viscometry and fluorescence technique. The high viscosity enhancement was found as the polymer concentration beyond a critical value c* and strongly depended on the copolymer microstructures. The number and length of hydrophobic microblocks within the copolymer backbones could be controlled by changing the AEBA concentration in copolymerization system. Addition of salt induced more hydrophobic association and viscosity enhancement. The synthesis method used was simple and environmentally friendly without any external surfactant contamination in comparison with the conventional micellar copolymerization.展开更多
Hydrophobically associative polyacrylamide (HAPAM) were prepared in aqueous solution by radical copolymerization of novel cationic surface-active monomer, dimethylhexadecyl(3-acrylamidopropyl)ammonium bromide (DM...Hydrophobically associative polyacrylamide (HAPAM) were prepared in aqueous solution by radical copolymerization of novel cationic surface-active monomer, dimethylhexadecyl(3-acrylamidopropyl)ammonium bromide (DMHAB), with acrylamide (AM) in the presence of DMHAB/CTAB mixed micelles. The length of hydrophobic microblock (NH) in HAPAM is controlled by the molar fraction of DMHAB in mixed micelles, which can be mediated by the ratio of CTAB to DMHAB. The results of steady-state fluorescence probe and viscometry experiments showed the ability of HAPAM association was determined by the length of the hydrophobic microblock. HAPAM with tunable association ability are promising materials for thickening agent.展开更多
Two xanthan gum derivatives hydrophobically modified by 4 or 8 tetradecyl chains per 100 xanthan gum structure units were synthesized. The derivatives were studied by scanning electron microscope and pyrene fluorescen...Two xanthan gum derivatives hydrophobically modified by 4 or 8 tetradecyl chains per 100 xanthan gum structure units were synthesized. The derivatives were studied by scanning electron microscope and pyrene fluorescence spectrometry. And the aqueous solution apparent viscosity of the derivatives was investi- gated. The results indicate that the network of the derivatives with more hydrophobic groups is closer and tighter. With increasing of alkyl chain substitution degree, the hydrophobically associating interactions enhance in aqueous solution. Aqueous solution apparent viscosity of the derivatives increases with increasing of polymer concentration and alkyl substitution degree, and decreases with the increase of temperature. In the brine solution, the strong viscosity enhancement phenomenon appears. The interaction between the derivatives and surfactant sodium dodecylbenzene sulfonate is strong.展开更多
The aggregation behavior and structure of hydrophobically modified block copolymers of acrylamide and 2-phenoxylethylacrylate were investigated by viscometry, 1H NMR relaxation, 2D NOESY, fluorescence and dynamic ligh...The aggregation behavior and structure of hydrophobically modified block copolymers of acrylamide and 2-phenoxylethylacrylate were investigated by viscometry, 1H NMR relaxation, 2D NOESY, fluorescence and dynamic light scattering. It Was found that the aggregation behavior was strongly dependent on the concentration of polymer solution and the hydrophobe contents. With varying concentration from 2.0, 6.0, 8.0 to 12.0 g/L, there were different aggregate morphologies distributed in aqueous solutions, such as monopolymer chain, micelle-like aggregate, multi-micelle aggregate and cross-linked network. According to the model of aggregation, it can give a reasonable explanation on the large magnitude enhancement of viscosity with the increasing of polymer concentration. Additional data of 2D NOESY and fluorescence show that the copolymer with higher hydrophobe content(molar fraction≥ 1%) is likely to form intra-molecular association.展开更多
Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of...Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs.展开更多
Hydrophobically modified poly(4-vinyl pyridines) by alkyl bromides are kinds of polysoap similar to the surfactant. Properties of dilute solutions were studied through the viscosity measurements in pure water and NaCl...Hydrophobically modified poly(4-vinyl pyridines) by alkyl bromides are kinds of polysoap similar to the surfactant. Properties of dilute solutions were studied through the viscosity measurements in pure water and NaCl solutions. In aqueous solutions of polysoaps hydrophobic interaction can be attributed to aggregation of hydrophobic groups of the polysoap main chains. The hydrophobic groups of polysoap can aggregate to form hydrophobic microdomains (micelles) in aqueous solution. This is a compact conformation. The formation of such microdomains is a process of dynamic equilibrium.展开更多
The primary interest to this study was to investigate the effect of milling parameters on the size of hydrophobically modified starch particles, aiming to produce small, uniformly sized modified starch microspheres. O...The primary interest to this study was to investigate the effect of milling parameters on the size of hydrophobically modified starch particles, aiming to produce small, uniformly sized modified starch microspheres. Octie, a commercial product originated from cornstarch modified using Octenyl Succinate Anhydride (OSA), was dispersed (3 wt%) using different media (water or ethanol) and subsequently wet-milled using a beads mill with zirconium beads at a rotation of 6,000 rpm up to 30 min. It was found that milling Octie in water dispersion for 3 min resulted in the smallest mean particle size (2.04 i 0.91 ktm), compared to unmilled modified starch granules (15.2 ~ 6.0 lam). Granular size and morphology changed considerably with further milling. For instance, very dense clusters with variable particle sizes (20.6 ~ 10.0 lam) were obtained after 30 min milling. As depicted by Scanning Electronic Microscopy, a large number of particles were apparently flattened during the milling process rather than broken, forming aggregates. Ultimately, within the range of experimental conditions tested, production of sub-micron modified starch particles was not possible.展开更多
Reliable and controllable switches are crucial in nanofluidics and iontronics.lon channels found in nature serve as a rich source of inspiration due to their intricate mechanisms modulated by stimuli like pressure,tem...Reliable and controllable switches are crucial in nanofluidics and iontronics.lon channels found in nature serve as a rich source of inspiration due to their intricate mechanisms modulated by stimuli like pressure,temperature,chemical species,and voltage.The artifi-cial replication of the properties of these channels is challenging due to their complex chemistry,limited stability range,and intricate moving parts,allosterically modulated.Nonetheless,we can harness some of the gating mechanisms of ion channels for nanofluidic and iontronic purposes.This theoretical and computational study explores the use of electrowetting in simple hydrophobic nanopores to control their conductance using an external applied voltage.We employ restrained molecular dynamics to calculate the free energy required for wetting a model nanopore under different voltages.Utilizing a simple theory,we generate free energy profles across a wide voltage range.We also computed transition rates between conductive and non-conductive states,showing their voltage depen-dence and how this behavior can impair memory to the system,resembling the memristor behavior voltage-gated channels in the brain.The proposed framework provides a promising avenue for designing and controlling hydrophobic nanopores via electrowet-ting,enabling potential applications in neuromorphic iontronics.展开更多
To determine the template effect of hydrophobically associating copolymers(HACPs) on the morphology of nano/micro structures, six HACPs were synthesized and used as templates to biomimetically synthesize cuprous ox...To determine the template effect of hydrophobically associating copolymers(HACPs) on the morphology of nano/micro structures, six HACPs were synthesized and used as templates to biomimetically synthesize cuprous oxide(Cu2O), an important semiconductor. This experiment showed a clear relationship between the associating state of the HACP molecules and the morphology of the Cu2O particles. Cu2O hollow spheres were preferentially prepared when the HACP molecules were in an intramolecular associating state. Furthermore, a Cu2O hexapod was easily obtained when the HACP molecules were in an intermolecular associating state. The morphologies of the Cu2O crystals prepared in the presence of the HACPs also confirmed this result.展开更多
A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses the...A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs.展开更多
A fluorocarbon-modified ply( N-isopropylacrylamide) has been synthesized by copolymerization of N-isopropyl acrylamide with a small amount of acrylate or methacrylate containing a perfluoroalkyl group. It was found th...A fluorocarbon-modified ply( N-isopropylacrylamide) has been synthesized by copolymerization of N-isopropyl acrylamide with a small amount of acrylate or methacrylate containing a perfluoroalkyl group. It was found that the hydrophilicity of macromolecular backbone is an important factor to the solution properties of the copolymers and that hydrophobic association between fluorocarbon group is stronger than that between the corresponding hydrocarbon analogies. The viscosity of some of the copolymer solutions was very sensitive to temperature. It was dilatant at higher fluorocarbon comonomer content ( 0. 20–1.0 mol%) and was Newtonian at very low fluorocarbon comonomer content (0.03–0.2 mol%). Evidence for hydrophobic association of the fluorocarbon groups was obtained from the effects of adding NaCl and surfactants on the solution viscosity. The LC-ST properties of these copolymers were studied by DSC method and this was also found to be consistent with hydrophobic association between the fluorocarbons.展开更多
Dilute solution viscosity of fluorocarbon-containing hydrophobically modified poly (acrylic add) was measured in aqueous solutions of various NaCl concentrations. The intrinsic viscosity ([η]) and Huggins coefficient...Dilute solution viscosity of fluorocarbon-containing hydrophobically modified poly (acrylic add) was measured in aqueous solutions of various NaCl concentrations. The intrinsic viscosity ([η]) and Huggins coefficient (kH) were evaluated using Huggins equations. It is found that, at low Nacl concentration, the modified polymers exhibit values of intrinsic viscosity ([η]) and Huggins coefficient (kH) similar to those of unmodified polymers. For both of the modified and unmodified polymers, the intrinsic viscosity decreases with increase of NaCl concentration, while the Huggins coefficient increases upon addition of NaCl. But the variation of [η] and kH is more significant for the modified polymers, which reflects the enhanced intra- and intermolecular hydrophobic association at higher Nacl concentration.展开更多
In this paper, a novel dual-activate hard segment strategy is proposed for the fabrication of polydimethylsiloxane(PDMS) based supramolecular polymer(PDMS-PDITC-IPDI). The unique design endows the PDMS-PDITC-IPDI with...In this paper, a novel dual-activate hard segment strategy is proposed for the fabrication of polydimethylsiloxane(PDMS) based supramolecular polymer(PDMS-PDITC-IPDI). The unique design endows the PDMS-PDITC-IPDI with high toughness(43.1–24.5 MJ/m^(3)), tensile strength(11.3–6.6 MPa) and elongation at break(730%–615%), and the mechanical properties and dynamic property can be regulated by varying degrees of hard segment activation. Moreover, the PDMS-PDITC-IPDI polymers exhibit excellent self-recovery property during successive loading-unloading processes. Additionally, both wettability damage caused by O2 plasma treatment and mechanical damage can be healed by simple heating, showing good hydrophobic recovery and selfhealability. Taking advantages of merits of the PDMS-PDITC-IPDI, the applications of the material as recyclable adhesive and 3D printing material are also investigated.展开更多
Poly(acrylic acid)s (PAAs) modified with a series of fluorocarbon group (R f) end capped Poly(ethylene glycol) (PEG) macromonomers (number of ethylene oxide unit: 1, 9, 23, 45) and corresponding copolymers witho...Poly(acrylic acid)s (PAAs) modified with a series of fluorocarbon group (R f) end capped Poly(ethylene glycol) (PEG) macromonomers (number of ethylene oxide unit: 1, 9, 23, 45) and corresponding copolymers without fluorocarbon end groups were synthesized. It was found that the effect of the hydrophobic association of fluorocarbon groups on the solution viscosity prevailed over that of the hydrogen bond between grafted PEG and the backbone. Rheological measurement on the aqueous solutions of these poly(acrylic acid co R f PEG macromonomer)s demonstrated that the best thickening performance was shown when the number of ethylene oxide unit (EO number) was 23.展开更多
Poly(acrylic acid) (PAA) gel network with only chemical crosslinking and hydrophobically modified PAA (HM-PAA) gels with both chemical and physical crosslinking were synthesized by radical polymerization in tert-butan...Poly(acrylic acid) (PAA) gel network with only chemical crosslinking and hydrophobically modified PAA (HM-PAA) gels with both chemical and physical crosslinking were synthesized by radical polymerization in tert-butanol, using ethylene glycol dimethacrylate (EGDMA) as crosslinker, and 2-(N-ethylperfluorooctanesulfoamido)ethyl methacrylate (FMA), stearyl acrylate (SA) or lauryl acrylate (LA) as hydrophobic comonomer respectively. The effect of the fractions and the species of the hydrophobes on swelling properties of HM-PAA gels and the interaction of gels and surfactants were studied. The results showed that the swelling ratio of HM-PAA gels exhibited a sharp decrease with increasing hydrophobic comonomer concentration, which could be ascribed to the formation of strong hydrophobic association among hydrophobic groups. It was proved that two kinds of binding mechanisms of surfactant/gel and different kinds of hydrophobic clusters existed in gels containing both physical and chemical networks.展开更多
文摘Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.
文摘Enhanced oil recovery(EOR)by means of polymer flooding is an important technology for the strategic development of offshore oilfields in China.Hydrophobically associating polyacrylamide(HAPAM)has been recently proposed as a new flooding agent.The solubility of HAPAM is low,which is the bottleneck for further improving the oil recovery through polymer flooding in offshore oilfield.Stirred tanks have been used on offshore platforms to enhance HAPAM dissolving.But there is little literature on the study of HAPAM dissolving characteristics in stirred tanks.In this paper,effects of temperature,salinity,stirring speed,impeller type and stirring method on the dissolution of HAPAM are reported.The experimental results manifest that the dissolving rate of HAPAM increases with temperature and stirring speed,but the viscosity of the polymer solution decreases.There is an optimal range of salinity for polymer dissolving.Combining the operation mode of up-pumping with varying stirring speed,hydrofoil impeller can accelerate the dissolution of HAPAM and maintain a high solution viscosity.
文摘A temperature-resistant, salt-tolerant polyacrylamide, hydrophobically associating polymer (HAP), was synthesized in the State Key Laboratory of Heavy Oil Processing. The rheological behavior of HAP solution was investigated by means of flow experiments in porous media and by using a HAAKE RS600 rheometer. The results of Nuclepore membrane filtration showed that filtration time increased sharply when the critical association concentration was reached. Shear rate had a greater impact on viscosity and shear stress with increasing HAP concentration. The HAP solution with a concentration of 100 mg/L (salinity 32,868 mg/L) exhibited negative thixotropy. However, at the same salinity the HAP solution showed thixotropy and its viscosity became greater when the polymer concentration increased to 1,500 mg/L. The flow experiments in cemented core samples indicated that the resistance factor and residual resistance factor of the HAP solution were 31.8 and 12 when polymer concentration and salinity were 1,500 mg/L, 32,868 mg/L at 85℃ respectively, which is favorable for flooding application. Such factors of partially hydrolyzed polyaerylamide 3530S were merely 3.14 and 1.71, so it could not be applied to polymer flooding in the oilfield with high temperature and high salinity.
基金Project supported by National Natural Science Foundation,Grant approval numbers 29472074 and 29632003
文摘In this article, the synthesis and characterization of a novel fluoromonomer and its copolymer with acrylamide is reported. 2-perfluoroamyl-4-hydroxylquinoline 2 was synthesized from ethyl 2, 2-dihydroperfluoroheptanoate in high yields. The monomer 4 was then synthesized from 2 in two steps readily in high yields. Synthesis and characterization of copolymers of acrylamide (AM) and the fluoromonomer were investigated. The composition and intrinsic viscosity of these copolymers were studied. It was found that the rheological properties of aqueous solutions of polyacrylamide were modified significantly when a small proportion of the fluoromonomer 4 was incorporated on investigating the viscosity-concentration profiles, pseudoplasticity of these solutions and the effect of the presence of surfactant. These results could be explained by the hydrophobic association of the fluorocarbon segments in the aqueous solutions of these copolymers.
文摘A series of hydrophobically associating polyacrylamides modified by small amounts (〈 3 mol%) of a self- associative cationic monomer 4-(2-(acryloyloxy) ethoxy) benzyl tri-ethyl ammonium bromide (AEBA) as hydrophobe were synthesized by radical copolymerization in aqueous solutions without external surfactants. The resulting eopolymers containing a multiblock structure exhibited a high tendency for hydrophobic association and a high thickening capacity. Solution properties and aggregation structures were investigated by viscometry and fluorescence technique. The high viscosity enhancement was found as the polymer concentration beyond a critical value c* and strongly depended on the copolymer microstructures. The number and length of hydrophobic microblocks within the copolymer backbones could be controlled by changing the AEBA concentration in copolymerization system. Addition of salt induced more hydrophobic association and viscosity enhancement. The synthesis method used was simple and environmentally friendly without any external surfactant contamination in comparison with the conventional micellar copolymerization.
文摘Hydrophobically associative polyacrylamide (HAPAM) were prepared in aqueous solution by radical copolymerization of novel cationic surface-active monomer, dimethylhexadecyl(3-acrylamidopropyl)ammonium bromide (DMHAB), with acrylamide (AM) in the presence of DMHAB/CTAB mixed micelles. The length of hydrophobic microblock (NH) in HAPAM is controlled by the molar fraction of DMHAB in mixed micelles, which can be mediated by the ratio of CTAB to DMHAB. The results of steady-state fluorescence probe and viscometry experiments showed the ability of HAPAM association was determined by the length of the hydrophobic microblock. HAPAM with tunable association ability are promising materials for thickening agent.
基金Sponsored by Major"10th Five-Year"Project of China Petroleum & Chemical Corporation(P10043)
文摘Two xanthan gum derivatives hydrophobically modified by 4 or 8 tetradecyl chains per 100 xanthan gum structure units were synthesized. The derivatives were studied by scanning electron microscope and pyrene fluorescence spectrometry. And the aqueous solution apparent viscosity of the derivatives was investi- gated. The results indicate that the network of the derivatives with more hydrophobic groups is closer and tighter. With increasing of alkyl chain substitution degree, the hydrophobically associating interactions enhance in aqueous solution. Aqueous solution apparent viscosity of the derivatives increases with increasing of polymer concentration and alkyl substitution degree, and decreases with the increase of temperature. In the brine solution, the strong viscosity enhancement phenomenon appears. The interaction between the derivatives and surfactant sodium dodecylbenzene sulfonate is strong.
基金Supported by the Youth Research Fund of Beijing Institute of Petrochemical Technology(No.N07-04)
文摘The aggregation behavior and structure of hydrophobically modified block copolymers of acrylamide and 2-phenoxylethylacrylate were investigated by viscometry, 1H NMR relaxation, 2D NOESY, fluorescence and dynamic light scattering. It Was found that the aggregation behavior was strongly dependent on the concentration of polymer solution and the hydrophobe contents. With varying concentration from 2.0, 6.0, 8.0 to 12.0 g/L, there were different aggregate morphologies distributed in aqueous solutions, such as monopolymer chain, micelle-like aggregate, multi-micelle aggregate and cross-linked network. According to the model of aggregation, it can give a reasonable explanation on the large magnitude enhancement of viscosity with the increasing of polymer concentration. Additional data of 2D NOESY and fluorescence show that the copolymer with higher hydrophobe content(molar fraction≥ 1%) is likely to form intra-molecular association.
基金the National Natural Science Foundation of China(51904329,52174014)the Major Scientific and Technological Projects of CNPC(ZD 2019-183-005)Key R&D Program of Shandong Province(No.2020ZLYS07).
文摘Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs.
基金The project is financially supported by National Natural Science Foundation of China.
文摘Hydrophobically modified poly(4-vinyl pyridines) by alkyl bromides are kinds of polysoap similar to the surfactant. Properties of dilute solutions were studied through the viscosity measurements in pure water and NaCl solutions. In aqueous solutions of polysoaps hydrophobic interaction can be attributed to aggregation of hydrophobic groups of the polysoap main chains. The hydrophobic groups of polysoap can aggregate to form hydrophobic microdomains (micelles) in aqueous solution. This is a compact conformation. The formation of such microdomains is a process of dynamic equilibrium.
文摘The primary interest to this study was to investigate the effect of milling parameters on the size of hydrophobically modified starch particles, aiming to produce small, uniformly sized modified starch microspheres. Octie, a commercial product originated from cornstarch modified using Octenyl Succinate Anhydride (OSA), was dispersed (3 wt%) using different media (water or ethanol) and subsequently wet-milled using a beads mill with zirconium beads at a rotation of 6,000 rpm up to 30 min. It was found that milling Octie in water dispersion for 3 min resulted in the smallest mean particle size (2.04 i 0.91 ktm), compared to unmilled modified starch granules (15.2 ~ 6.0 lam). Granular size and morphology changed considerably with further milling. For instance, very dense clusters with variable particle sizes (20.6 ~ 10.0 lam) were obtained after 30 min milling. As depicted by Scanning Electronic Microscopy, a large number of particles were apparently flattened during the milling process rather than broken, forming aggregates. Ultimately, within the range of experimental conditions tested, production of sub-micron modified starch particles was not possible.
基金supported by the H2020 European Research Council[803213]Partnership for Advanced Computing in Europe AISBL。
文摘Reliable and controllable switches are crucial in nanofluidics and iontronics.lon channels found in nature serve as a rich source of inspiration due to their intricate mechanisms modulated by stimuli like pressure,temperature,chemical species,and voltage.The artifi-cial replication of the properties of these channels is challenging due to their complex chemistry,limited stability range,and intricate moving parts,allosterically modulated.Nonetheless,we can harness some of the gating mechanisms of ion channels for nanofluidic and iontronic purposes.This theoretical and computational study explores the use of electrowetting in simple hydrophobic nanopores to control their conductance using an external applied voltage.We employ restrained molecular dynamics to calculate the free energy required for wetting a model nanopore under different voltages.Utilizing a simple theory,we generate free energy profles across a wide voltage range.We also computed transition rates between conductive and non-conductive states,showing their voltage depen-dence and how this behavior can impair memory to the system,resembling the memristor behavior voltage-gated channels in the brain.The proposed framework provides a promising avenue for designing and controlling hydrophobic nanopores via electrowet-ting,enabling potential applications in neuromorphic iontronics.
基金Supported by the National Natural Science Foundation of China(No. 51102219) and the Fundamental Research Funds for the Central Umversities of China(Nos.201113024, 41404010204).
文摘To determine the template effect of hydrophobically associating copolymers(HACPs) on the morphology of nano/micro structures, six HACPs were synthesized and used as templates to biomimetically synthesize cuprous oxide(Cu2O), an important semiconductor. This experiment showed a clear relationship between the associating state of the HACP molecules and the morphology of the Cu2O particles. Cu2O hollow spheres were preferentially prepared when the HACP molecules were in an intramolecular associating state. Furthermore, a Cu2O hexapod was easily obtained when the HACP molecules were in an intermolecular associating state. The morphologies of the Cu2O crystals prepared in the presence of the HACPs also confirmed this result.
基金supported by a National Research Foundation of Korea(NRF)Grant funded by the Ministry of Science and ICT(2021R1A2C1014294,2022R1A2C3003319)the BK21 FOUR(Fostering Outstanding Universities for Research)through the National Research Foundation(NRF)of Korea.
文摘A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs.
基金Project (No. 29274100) supported by the National Natural Science Foundation of China.
文摘A fluorocarbon-modified ply( N-isopropylacrylamide) has been synthesized by copolymerization of N-isopropyl acrylamide with a small amount of acrylate or methacrylate containing a perfluoroalkyl group. It was found that the hydrophilicity of macromolecular backbone is an important factor to the solution properties of the copolymers and that hydrophobic association between fluorocarbon group is stronger than that between the corresponding hydrocarbon analogies. The viscosity of some of the copolymer solutions was very sensitive to temperature. It was dilatant at higher fluorocarbon comonomer content ( 0. 20–1.0 mol%) and was Newtonian at very low fluorocarbon comonomer content (0.03–0.2 mol%). Evidence for hydrophobic association of the fluorocarbon groups was obtained from the effects of adding NaCl and surfactants on the solution viscosity. The LC-ST properties of these copolymers were studied by DSC method and this was also found to be consistent with hydrophobic association between the fluorocarbons.
基金Project supported by BASF R&D Fund in China and the National Natural Science Foundation of China (No. 29674039).
文摘Dilute solution viscosity of fluorocarbon-containing hydrophobically modified poly (acrylic add) was measured in aqueous solutions of various NaCl concentrations. The intrinsic viscosity ([η]) and Huggins coefficient (kH) were evaluated using Huggins equations. It is found that, at low Nacl concentration, the modified polymers exhibit values of intrinsic viscosity ([η]) and Huggins coefficient (kH) similar to those of unmodified polymers. For both of the modified and unmodified polymers, the intrinsic viscosity decreases with increase of NaCl concentration, while the Huggins coefficient increases upon addition of NaCl. But the variation of [η] and kH is more significant for the modified polymers, which reflects the enhanced intra- and intermolecular hydrophobic association at higher Nacl concentration.
基金supported by the National Natural Science Foundation of China (Grant No. 51473114)the Natural Science Foundation of Tianjin (Grant No. 19JYCBJC17400)。
文摘In this paper, a novel dual-activate hard segment strategy is proposed for the fabrication of polydimethylsiloxane(PDMS) based supramolecular polymer(PDMS-PDITC-IPDI). The unique design endows the PDMS-PDITC-IPDI with high toughness(43.1–24.5 MJ/m^(3)), tensile strength(11.3–6.6 MPa) and elongation at break(730%–615%), and the mechanical properties and dynamic property can be regulated by varying degrees of hard segment activation. Moreover, the PDMS-PDITC-IPDI polymers exhibit excellent self-recovery property during successive loading-unloading processes. Additionally, both wettability damage caused by O2 plasma treatment and mechanical damage can be healed by simple heating, showing good hydrophobic recovery and selfhealability. Taking advantages of merits of the PDMS-PDITC-IPDI, the applications of the material as recyclable adhesive and 3D printing material are also investigated.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .5 9973 0 2 5 )
文摘Poly(acrylic acid)s (PAAs) modified with a series of fluorocarbon group (R f) end capped Poly(ethylene glycol) (PEG) macromonomers (number of ethylene oxide unit: 1, 9, 23, 45) and corresponding copolymers without fluorocarbon end groups were synthesized. It was found that the effect of the hydrophobic association of fluorocarbon groups on the solution viscosity prevailed over that of the hydrogen bond between grafted PEG and the backbone. Rheological measurement on the aqueous solutions of these poly(acrylic acid co R f PEG macromonomer)s demonstrated that the best thickening performance was shown when the number of ethylene oxide unit (EO number) was 23.
文摘Poly(acrylic acid) (PAA) gel network with only chemical crosslinking and hydrophobically modified PAA (HM-PAA) gels with both chemical and physical crosslinking were synthesized by radical polymerization in tert-butanol, using ethylene glycol dimethacrylate (EGDMA) as crosslinker, and 2-(N-ethylperfluorooctanesulfoamido)ethyl methacrylate (FMA), stearyl acrylate (SA) or lauryl acrylate (LA) as hydrophobic comonomer respectively. The effect of the fractions and the species of the hydrophobes on swelling properties of HM-PAA gels and the interaction of gels and surfactants were studied. The results showed that the swelling ratio of HM-PAA gels exhibited a sharp decrease with increasing hydrophobic comonomer concentration, which could be ascribed to the formation of strong hydrophobic association among hydrophobic groups. It was proved that two kinds of binding mechanisms of surfactant/gel and different kinds of hydrophobic clusters existed in gels containing both physical and chemical networks.