期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Novel Hybrid FA-Based LSSVR Learning Paradigm for Hydropower Consumption Forecasting 被引量:4
1
作者 TANG Ling WANG Zishu +2 位作者 LI Xinxie YU Lean ZHANG Guoxing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1080-1101,共22页
Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support ... Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support vector regression (LSSVR), i.e., FA-based LSSVR model. In the novel model, the powerful and effective artificial intelligence (AI) technique, i.e., LSSVR, is employed to forecast hydropower consumption. Furthermore, a promising AI optimization tool, i.e., FA, is espe- cially introduced to address the crucial but difficult task of parameters determination in LSSVR (e.g., hyper and kernel function parameters). With the Chinese hydropower consumption as sample data, the empirical study has statistically confirmed the superiority of the novel FA-based LSSVR model to other benchmark models (including existing popular traditional econometric models, AI models and similar hybrid LSSVRs with other popular parameter searching tools)~ in terms of level and direc- tional accuracy. The empirical results also imply that the hybrid FA-based LSSVR learning paradigm with powerful forecasting tool and parameters optimization method can be employed as an effective forecasting tool for not only hydropower consumption but also other complex data. 展开更多
关键词 Artificial intelligence firefly algorithm hybrid model hydropower consumption leastsquares support vector regression time series forecasting.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部