Traditional optimal operation of hydropower station usually has two problems. One is that the optimal algorithm hasn’t high efficiency, and the other is that the optimal operation model pays little attention to ecolo...Traditional optimal operation of hydropower station usually has two problems. One is that the optimal algorithm hasn’t high efficiency, and the other is that the optimal operation model pays little attention to ecology. And with the development of electric power market, the generated benefit is concerned instead of generated energy. Based on the analysis of time-varying electricity price policy, an optimal operation model of hydropower station reservoir with ecology consideration is established. The model takes the maximum annual power generation benefit, the maximum output of the minimal output stage in the year and the minimum shortage of eco-environment demand as the objectives, and reservoir water quantity balance, reservoir storage capacity, reservoir discharge flow and hydropower station output and nonnegative variable as the constraints. To solve the optimal model, a chaotic optimization genetic algorithm which combines the ergodicity of chaos and the inversion property of genetic algorithm is exploited. An example is given, which shows that the proposed model and algorithm are scientific and feasible to deal with the optimal operation of hydropower station.展开更多
The purpose of this study is to estimate the monetary value of the main environmental and external costs of Yali Hydropower Plant (YHPP) and to incorporate them into the financial viability indices of the plant, namel...The purpose of this study is to estimate the monetary value of the main environmental and external costs of Yali Hydropower Plant (YHPP) and to incorporate them into the financial viability indices of the plant, namely its net present value and electricity price. The results were found that if the electricity price is kept at its original level of 5.2 US cents/kWh to cover direct costs only, the net present value of the plant would be reduced to about 27% by incorporating environmental and external costs. Alternatively, the electricity price would have to be increased to 5.68 US cents/kWh in order to cover the full costs of YHPP and to maintain the original net present value. The main policy recommendations are: Government regulations should require that the financial analysis and appraisal of all future electricity sources include the full cost of these schemes, including not only direct costs but also environmental and external costs related to preventing or mitigating the environmental impact caused by them. An appropriate financial mechanism should be established to allocate the revenue from full cost electricity pricing to a fund to cover the environmental protection and compensation costs.展开更多
文摘Traditional optimal operation of hydropower station usually has two problems. One is that the optimal algorithm hasn’t high efficiency, and the other is that the optimal operation model pays little attention to ecology. And with the development of electric power market, the generated benefit is concerned instead of generated energy. Based on the analysis of time-varying electricity price policy, an optimal operation model of hydropower station reservoir with ecology consideration is established. The model takes the maximum annual power generation benefit, the maximum output of the minimal output stage in the year and the minimum shortage of eco-environment demand as the objectives, and reservoir water quantity balance, reservoir storage capacity, reservoir discharge flow and hydropower station output and nonnegative variable as the constraints. To solve the optimal model, a chaotic optimization genetic algorithm which combines the ergodicity of chaos and the inversion property of genetic algorithm is exploited. An example is given, which shows that the proposed model and algorithm are scientific and feasible to deal with the optimal operation of hydropower station.
文摘The purpose of this study is to estimate the monetary value of the main environmental and external costs of Yali Hydropower Plant (YHPP) and to incorporate them into the financial viability indices of the plant, namely its net present value and electricity price. The results were found that if the electricity price is kept at its original level of 5.2 US cents/kWh to cover direct costs only, the net present value of the plant would be reduced to about 27% by incorporating environmental and external costs. Alternatively, the electricity price would have to be increased to 5.68 US cents/kWh in order to cover the full costs of YHPP and to maintain the original net present value. The main policy recommendations are: Government regulations should require that the financial analysis and appraisal of all future electricity sources include the full cost of these schemes, including not only direct costs but also environmental and external costs related to preventing or mitigating the environmental impact caused by them. An appropriate financial mechanism should be established to allocate the revenue from full cost electricity pricing to a fund to cover the environmental protection and compensation costs.