A novel hydroxypolyether blocked polydimethylsiloxane, poly(ethylene oxide) propyl-b-polydimethylsiloxane-b-propyl poly(ethylene oxide) (PEO-b-PDMS-b-PEO) was synthesized by simple hydrosilation reaction of poly...A novel hydroxypolyether blocked polydimethylsiloxane, poly(ethylene oxide) propyl-b-polydimethylsiloxane-b-propyl poly(ethylene oxide) (PEO-b-PDMS-b-PEO) was synthesized by simple hydrosilation reaction of poly(ethylene glycol) monoallyl ether with α,ω-dihydrogen terminated PDMS (HPDMS). Fourier transform infrared spectroscopy (FTIR) and IH NMR were used to identify the structure of PEO-b-PDMS-b-PEO and intermediate product HPDMS. Based on the effect investigations of temperature, reactant molar ratio, catalyst and time on the hydrosilation, it was found that the conversion of Si-H bond to SiC bond increased with the increase of catalyst and time, and the reaction completed when the content of catalyst was 22μg/g and the time was 5 h, respectively. Urethane reaction of OH and NCO group confirms that PEO-b-PDMS-b-PEO is more reactive toward to diisocyanate than α,ω-dihydroxylbutyl terminated PDMS.展开更多
基金the National Natural Science Foundation of China(No.50273035)Anhui Provincial Education Department(No.2004kj362zd)are acknowledged.
文摘A novel hydroxypolyether blocked polydimethylsiloxane, poly(ethylene oxide) propyl-b-polydimethylsiloxane-b-propyl poly(ethylene oxide) (PEO-b-PDMS-b-PEO) was synthesized by simple hydrosilation reaction of poly(ethylene glycol) monoallyl ether with α,ω-dihydrogen terminated PDMS (HPDMS). Fourier transform infrared spectroscopy (FTIR) and IH NMR were used to identify the structure of PEO-b-PDMS-b-PEO and intermediate product HPDMS. Based on the effect investigations of temperature, reactant molar ratio, catalyst and time on the hydrosilation, it was found that the conversion of Si-H bond to SiC bond increased with the increase of catalyst and time, and the reaction completed when the content of catalyst was 22μg/g and the time was 5 h, respectively. Urethane reaction of OH and NCO group confirms that PEO-b-PDMS-b-PEO is more reactive toward to diisocyanate than α,ω-dihydroxylbutyl terminated PDMS.