Aimed at the relatively lower energy density and complicated coordinating operation between two power sources,a special energy control strategy is required to maximize the fuel saving potential.Then a new type of conf...Aimed at the relatively lower energy density and complicated coordinating operation between two power sources,a special energy control strategy is required to maximize the fuel saving potential.Then a new type of configuration for hydrostatic transmission hybrid vehicles(PHHV) and the selection criterion for important components are proposed.Based on the optimization of planet gear transmission ratio and the analysis of optimal energy distribution for the proposed PHHV on a representative urban driving cycle,a fuzzy torque control strategy and a braking energy regeneration strategy are designed and developed to realize the real-time control of energy for the proposed PHHV.Simulation results demonstrate that the energy control strategy effectively improves the fuel economy of PHHV.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.50375033)the National Key Laboratory of Vehicular Transmission(Grant No.51457050105HT0112)
文摘Aimed at the relatively lower energy density and complicated coordinating operation between two power sources,a special energy control strategy is required to maximize the fuel saving potential.Then a new type of configuration for hydrostatic transmission hybrid vehicles(PHHV) and the selection criterion for important components are proposed.Based on the optimization of planet gear transmission ratio and the analysis of optimal energy distribution for the proposed PHHV on a representative urban driving cycle,a fuzzy torque control strategy and a braking energy regeneration strategy are designed and developed to realize the real-time control of energy for the proposed PHHV.Simulation results demonstrate that the energy control strategy effectively improves the fuel economy of PHHV.