A new hydrothermal field(Tianshi)was discovered on the rift valley wall through plume anomaly surveys and geological work conducted in 2012 and 2018 between 2°35′N and 2°43′N of the slow-spreading Carlsber...A new hydrothermal field(Tianshi)was discovered on the rift valley wall through plume anomaly surveys and geological work conducted in 2012 and 2018 between 2°35′N and 2°43′N of the slow-spreading Carlsberg Ridge(CR).Here,the results of two expeditions conducted to detect and characterize the new hydrothermal field are reported.Mineralogical and geochemical data,as well as 14 C ages of a sediment core collected near the field are presented to reveal the hydrothermal history.Results show that the Tianshi field is a basalt-hosted hydrothermal system.Geochemical data of the sediments collected near the field indicate a strong hydrothermal contribution,and hydrothermal Fe and Cu fluxes range from 30 to 155 mg/(cm^(2)·ka)and 0.59 to 11.49 mg/(cm^(2)·ka),respectively.Temporal variations in the fluxes of hydrothermal Fe indicate that there have been at least three amplified hydrothermal venting events(H 1,H 2,and H 3)in the Tianshi field over the last 35.2 ka,in 28.6-35.2 ka BP,22.0-27.6 ka BP,and 1.2-11.4 ka BP,respectively.Hydrothermal event H 2 was driven by an increased magmatic production associated with sea level fall during the Last Glacial Maximum,while event H 3 was promoted by tectonic activity associated with a rapid sea level rise.This study further verified the role of sea level change in modulating hydrothermal activity on mid-ocean ridges.展开更多
The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely ...The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. lourdanne hydrothermal field (27°51'S, 63°56'E) in 1998. During the COMRA DYl15-20 cruise in 2009, two additional hydrothermal fields (i.e., the Tiancheng (27°51'S, 63°55'E) and Tianzuo (27°57'S, 63°32'E) fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible liaolong in 2014-2015. The Tiancheng filed can he characterized as a low- temperature (up to 13.2℃) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.展开更多
Helium, neon and argon isotope compositions of fluid inclusions have been measured in massive sulfide samples from theJade hydrothermal field in the central Okinawa Trough. Fluid-inclusion 3He/4He ratios are between 6...Helium, neon and argon isotope compositions of fluid inclusions have been measured in massive sulfide samples from theJade hydrothermal field in the central Okinawa Trough. Fluid-inclusion 3He/4He ratios are between 6.2 and 10.1 times theair value (Ra), and with a mean of 7.8Ra, which are consistent with the mid-ocean ridge basalt values [3He/4He≈(6Ra^11Ra)]. Values for 20Ne/22Ne are from 10.7 to 11.3, which are significantly higher than the atmospheric ratio (9.8).And the fluid-inclusion 40Ar/36Ar ratios range from 287 to 334, which are close to the atmosperic values (295.5). Theseresults indicate that the noble gases of trapped hydrothermal fluids in massive sulfides are a mixture of mantle- andseawater-derived components, and the helium of fluid inclusions is mainly from mantle, the nelium and argon isotopecompositions are mainly from seawater.展开更多
Eighteen samples of hydrothermal sediments from the Jade hydrothermal field in the central Okinawa Trough have been analyzed. Sulfur isotopic values for 10 sulfide samples vary from 5.2× 10^(-3)to 7.2× 10^(-...Eighteen samples of hydrothermal sediments from the Jade hydrothermal field in the central Okinawa Trough have been analyzed. Sulfur isotopic values for 10 sulfide samples vary from 5.2× 10^(-3)to 7.2× 10^(-3), δ^(34)S values for 7 sulfate samples vary from 16.3 × 10^(-3) to 22.3 × 10^(-3), and 1 native sulphur sample has a δ^(34)S value of 8.2 × 10^(-3). The major sources of sulfur for hydrothermal sediment are intermediate to acid volcanic rocks and sea water sulfate, and it is possible that the partial sulfur of hydrothermal sediment is from the pelagic sediment by the interaction between hydrothermal fluid and sediment. The reasons of causing the distinct differences in sulfur isotopic values for sulfide samples from hydrothermal sediment ( compared with other hydrothermal fields), are the differences in the sources of sulfur, the magmatic activity and the tectonic evolution in different hydrothermal fields. The sulfur evolution is a long and complex process in the seafloor hydrothermal system, involving the ascending of heating sea water, the interaction between fluid and volcanic rocks, the mixing of sea water sulfate and sulfur from intermediate to acid volcanic rocks, and the fluid/pelagic-sediment interaction. And the interaction between sea water and intermediate to acid volcanic rocks is an important mechanism for the sulfur evolution in the Jade hydrothermal field.展开更多
Hydrothermal plume is an important constituent of seabed hydrothermal circulation and is also one of the characteristics of active hydrothermal vents. Portable Miniature Autonomous Plume Recorders (MAPR) attached to...Hydrothermal plume is an important constituent of seabed hydrothermal circulation and is also one of the characteristics of active hydrothermal vents. Portable Miniature Autonomous Plume Recorders (MAPR) attached to a towed deep-sea instrument was used to search for hydrothermal plumes and hydrothermal vents. We introduced the basic principle of MAPR based on deep towing technology to detect plumes, then analyzed the factors affecting the quality of the MAPR data and presented a data correction method for MAPR, including instrument location correction, noise reduction processing, system error elimination and seawater background reduction. Finally we applied the method to analyze MAPR data obtained during the Chinese DY115-21 cruise on R/VDayang Iin the “Precious Stone Mountain” hydrothermal field on the Gala-pagos Microplate. The results provided a better understanding of the distribution of the hydrothermal activ-ity in this field, indicating the presence of a new hydrothermal vent.展开更多
Polymetalic sulfide is the main product of sea-floor hydrothermal venting, and has become an important sea-floor mineral resources for its rich in many kinds of precious metal elements. Since 2007, a number of investi...Polymetalic sulfide is the main product of sea-floor hydrothermal venting, and has become an important sea-floor mineral resources for its rich in many kinds of precious metal elements. Since 2007, a number of investigations have been carried out by the China Ocean Mineral Resources Research and Development Association(COMRA)cruises(CCCs) along the Southwest Indian Ridge(SWIR). In 2011, the COMRA signed an exploration contract of sea-floor polymetallic sulfides of 10 000 km2 on the SWIR with the International Seabed Authority. Based on the multibeam data and shipborne gravity data obtained in 2010 by the R/V Dayang Yihao during the leg 6 of CCCs21, together with the global satellite surveys, the characteristics of gravity anomalies are analyzed in the Duanqiao hydrothermal field(37°39′S, 50°24′E). The "subarea calibration" terrain-correcting method is employed to calculate the Bouguer gravity anomaly, and the ocean bottom seismometer(OBS) profile is used to constrain the two-dimensional gravity anomaly simulation. The absent Moho in a previous seismic model is also calculated.The results show that the crustal thickness varies between 3 and 10 km along the profile, and the maximum crustal thickness reaches up to 10 km in the Duanqiao hydrothermal field with an average of 7.5 km. It is by far the most thicker crust discovered along the SWIR. The calculated crust thickness at the Longqi hydrothermal field is approximately 3 km, 1 km less than that indicated by seismic models, possibly due to the outcome of an oceanic core complex(OCC).展开更多
A seafloor hydrothermal field, named Deyin-1 later, near 15°S southern Mid-Atlantic Ridge(SMAR) was newly found during the 22 nd cruise carried out by the China Ocean Mineral Resources Research & Development A...A seafloor hydrothermal field, named Deyin-1 later, near 15°S southern Mid-Atlantic Ridge(SMAR) was newly found during the 22 nd cruise carried out by the China Ocean Mineral Resources Research & Development Association(COMRA). Sulfide samples were collected at three stations from the hydrothermal field during the26 th cruise in 2012. In this paper, mineralogical characteristics of the sulfides were analyzed with optical microscope, X-ray diffractometer, scanning electron microscope and electron microprobe to study the crystallization sequence of minerals and the process of hydrothermal mineralization. According to the difference of the ore-forming metal elements, the sulfide samples can be divided into three types:(1) the Ferich sulfide, which contains mainly pyrite and chalcopyrite;(2) the Fe-Cu-rich sulfide consisting predominantly of pyrite, chalcopyrite and isocubanite, with lesser amount of sphalerite, marmatite and pyrrhotine; and(3) the Fe-Zn-rich sulfide dominated by pyrite, sphalerite and marmatite, with variable amounts of chalcopyrite, isocubanite, pyrrhotine, marcasite, galena and gratonite. Mineral precipitations in these sulfides are in the sequence of chalcopyrite(isocubanite and possible coarse pyrite), fine pyrite,sphalerite(marmatite), galena, gratonite and then the minerals out of the dissolution. Two morphologically distinct generations(Py-I and Py-II) of pyrite are identified in each of the samples; inclusions of marmatite tend to exist in the coarse pyrite crystals(Py-I). Sphalerite in the Fe-Zn-rich sulfide is characterized by a"chalcopyrite disease" phenomenon. Mineral paragenetic relationships and a wide range of chemical compositions suggest that the environment of hydrothermal mineralization was largely changing. By comparison, the Fe-rich sulfide was formed in a relatively stable environment with a high temperature, but the conditions for the formation of the Fe-Cu-rich sulfide were variable. The Fe-Zn-rich sulfide was precipitated during the hydrothermal venting at relatively low temperature.展开更多
Utilizing Si, Fe and Mn concentrations within the end-member PACMANUS hydrothermal fluid, Si-Fe-Mn-H2O Pourbaix diagrams were constructed at 300℃and 25℃. ThePourbaix diagrams show that the main Si, Fe and Mn oxides ...Utilizing Si, Fe and Mn concentrations within the end-member PACMANUS hydrothermal fluid, Si-Fe-Mn-H2O Pourbaix diagrams were constructed at 300℃and 25℃. ThePourbaix diagrams show that the main Si, Fe and Mn oxides species precipitating from the hydrothermal fluid were SiO2, Fe(OH)3, Fe3(OH)8, Mn3O4, and Mn2O3at 25℃. During mixing of hydrothermal fluid with seawater, SiO2 precipitated earlier than Fe-Mn-oxyhydroxides because of the lower stability boundary. Then Fe(OH)2 precipitated first, followed by Fe3(OH)8 and Fe(OH)3, and last, small amounts of Mn3O4 and Mn2O3 precipitated. Fe(OH)3was readily de-posited in alkaline solution with little influence by Eh. There were many Si-Fe-Mn-concentric particles in the polished sections of the massive precipitates collected from PACMANUS. In the concentric nucleus and ellipsoid, Si oxides precipitated first before the hydrothermal fluid had mixed with seawater. In the concen-tric nucleus, after the precipitation of Si oxides, the increase of pH and Eh promoted the precipitation of Mn oxides around the Si oxides. In the large ellipsoid, the precipitation of Fe was divided into two periods. In the early period, increase of pH value of hydrothermal fluid produced by low-temperature convection and an input of a small volume of seawater promoted a small amount of Fe(OH)3 to precipitate in the Si-rich core. In the late period, after complete mixing with seawater and the resultant fluid was close to neutral or slightly alkaline in pH, Fe(OH)3was easily precipitated from the solution and distributed around the Si-rich core.展开更多
Hydrothermal venting has a profound effect on the chemical and biological properties of local and distal seawater and sediments. In this study, lipid biomarkers were analyzed to examine the potential influence of hydr...Hydrothermal venting has a profound effect on the chemical and biological properties of local and distal seawater and sediments. In this study, lipid biomarkers were analyzed to examine the potential influence of hydrothermal activity on the fate of organic matter(OM) in surface sediments around Tianxiu Hydrothermal Field in the Carlsberg Ridge(CR), Northwest Indian Ocean. By comparing the biomarker distributions of the samples with that of other typical hydrothermal sediments in the mid ocean ridge, it is shown that the location of the samples is not affected by the hydrothermal activity. The relatively low abundances of terrestrial n-alkyl lipids and riverine1,15-C_(32) diol suggested a minor contribution of terrigenous OM to the study area. The bacteria contributed predominantly to sedimentary marine OM;however, other marine source organisms, e.g., eukaryotes(i.e.,phytoplankton and fungi) could not be completely neglected. The marine-originated biomarkers showed significantly variable distributions between the two sediments, suggesting different dynamic physical and biogeochemical processes controlling the fate of marine OM. This study identified various diagnostic biomarkers(5,5-diethyl alkanes, diols and β-OH FAs), which may have significant environmental implications for future works in this region.展开更多
The stress state and rock mechanical properties govern the growth of faults and fractures,which constitute shallow hydrothermal pathways and control the distribution of seafloor massive sulfide(SMS)mounds in the seafl...The stress state and rock mechanical properties govern the growth of faults and fractures,which constitute shallow hydrothermal pathways and control the distribution of seafloor massive sulfide(SMS)mounds in the seafloor hydrothermal field.The stress field has an important influence on the formation and persistence of hydrothermal pathways.Based on multibeam bathymetric data from the Trans-Atlantic Geotraverse(TAG)field,we establish two three-dimensional geological models with different scales to simulate the stress field,which investigate the characteristics of hydrothermal pathways and associated SMS mounds.The simulation results show that oblique faults and fissures form in the tensile stress zone and that mounds,including active and inactive hydrothermal mounds form in the compressive stress zone.Fault activity,which is related to the stress field,affects the opening and closing of hydrothermal channels and changes the permeability structure of subseafloor wall rock.Therefore,the stress field controls the development and persistence of shallow hydrothermal pathways.The features of shallow hydrothermal pathways in the stress field can provide geomechanical information that is useful for identifying favorable zone for SMS deposit formation.展开更多
Si-Fe-Mn-oxyhydroxides dredged at the PACMANUS (Papua New Guinea-Australia-Canada-Manus) hydrothermal field, Eastern Manus Basin, have 87Sr/SSSr=0.708 079-0.708 581; eNd=5.149 833-6.534 826; 208pb/204pb=38.245-38.44...Si-Fe-Mn-oxyhydroxides dredged at the PACMANUS (Papua New Guinea-Australia-Canada-Manus) hydrothermal field, Eastern Manus Basin, have 87Sr/SSSr=0.708 079-0.708 581; eNd=5.149 833-6.534 826; 208pb/204pb=38.245-38.440; 207pb/204pb=lS.503-15.560; 206pb/204pb=lS.682-18.783. s7sr/sSSr isotope ratios are relatively homogeneous and close to the value of the surrounding seawater (0.709 16). The content of Sr in the samples contributed by seawater was estimated to be 76.7%-83.1% of total amount. The mixing temperature of hydrothermal fluids and seawater were ranging from 53.2℃ to 72.2℃ and the hydrothermal activities were unstable when the samples precipitated. The eNd values of all the samples are positive, which differ from the values of ferromanganese nodules (crusts) with hydrogenic origin. Nd was mainly derived from substrate rocks leached by hydrothermal circulation and preserved the hydrothermal signature. Ph isotopic compositions of most samples show minor variability except Sample #9-2 that has relatively high values of Pb isotopes. The Pb may be derived from the Eastern Manus Basin rocks leached by the hydrothermal fluid. The slightly lower 28pb/204pb and 207pb/204pb values of the samples indicated that the hydrothermal circulation in PACMANUS was not entire and sufficient, or that hydrothermal circulation had transient changes in the past. Si-Fe-Mn-oxyhydroxides in the samples preserved the heterogeneities of local rocks.展开更多
The mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the dacite-hosted PACMANUS hydrothermal field were analyzed.The samples are poorly crystallized Si-Fe-Mn oxyhydroxides with minor...The mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the dacite-hosted PACMANUS hydrothermal field were analyzed.The samples are poorly crystallized Si-Fe-Mn oxyhydroxides with minor birnessite, todorokite, nontronite, goethite, and opal-A.There are some microtextures which are rather like fossil microbes such as the filamentous silica and the hollow pipes.Flakes of nontronite crystals are found either forming a honeycomb texture or distrib- uted on the surface of the hollow pipes.Nontronite is the product precipitated from low-temperature hydrothermal fluids, and microbes may play a role in its formation.Si-Fe-Mn oxyhydroxides have two kinds of nuclei: Si-Mn nuclei and Si nuclei, both enveloped by the similar Si-Fe outer layer, existing in the rod-shaped oxyhydroxide and spheroidal oxyhydroxide, respectively.In the Si-Mn nuclei, the concentration of SiO2 is between 39.32 wt% and 86.31 wt%, and MnO concentration is between 4.97 wt% and 27.01 wt%, but Fe2O3 concentration is very low (0.54 wt%-3.43 wt%).In the Si nucleus the concentration of SiO2 is 90.17 wt%, but concentration of MnO and Fe2O3 are low, with 0.06 wt% and 3.47 wt%, respectively.The formation of the Si-Mn nucleus is closely related to microbes, whereas the Si nucleus is of inorganic origin.展开更多
Helium, neon and argon isotope compositions of fluid inclusionshave been measured in hydrothermal sulfide samples from the TAG hydrothermal field at the Mid-Atlantic Ridge. Fluid-inclusion 3He/4He ratios are 2.2-13.3 ...Helium, neon and argon isotope compositions of fluid inclusionshave been measured in hydrothermal sulfide samples from the TAG hydrothermal field at the Mid-Atlantic Ridge. Fluid-inclusion 3He/4He ratios are 2.2-13.3 times the air value (Ra), and with a mean of 7.2 Ra. Com-parison with the local vent fluids (3He/4He=7.5-8.2 Ra) and mid-ocean ridge basalt values (3He/4He=6-11 Ra) shows that the variation range of 3He/4He ratios from sulfide-hosted fluid inclu-sions is significantly large. Values for 20Ne/22Ne are from 10.2 to 11.4, which are significantly higher than the atmospheric ratio (9.8). And fluid-inclusion 40Ar/36Ar ratios range from 287 to 359, which are close to the atmospheric values (295.5). These results indicate that the noble gases of fluid inclu-sions in hydrothermal sulfides are a mixture of mantle- and seawater-derived noble gases; the partial mantle-derived components of trapped hydrothermal fluids may be from the lower mantle; the helium of fluid inclusions is mainly from upper mantle; and the Ne and Ar components are mainly from seawater.展开更多
The CDE hydrothermal field was first discovered during a Chinese cruise to the East Lau Basin Spreading Centre in 2007. Apart from significant amounts of loose Fe-Si-Mn (oxyhydr) oxide (referred to as oxide below)...The CDE hydrothermal field was first discovered during a Chinese cruise to the East Lau Basin Spreading Centre in 2007. Apart from significant amounts of loose Fe-Si-Mn (oxyhydr) oxide (referred to as oxide below) precipitates, a small Si-rich oxide chimney was also recovered on this cruise. In this study, we report on the mineralogical and geochemical analyses of this chimney and a model for its growth that has been developed. Based on the mineralogy and O isotope results, the chimney walls can be divided into four growth generations (layers) from the inner to the outer layers: amorphous opal and barite layer (pre- cipitation temperature 68.5℃ based on oxygen isotope determinations), a rod-like amorphous layer (precipitation temperature 39.6℃), a filamentous Fe-Si oxide layer, and an outer Fe-Mn oxide layer. Investigations based on SEM and EDS showed that neutrophilic Fe-oxidizing bacteria play an important role in the formation of this chimney, particularly in the outer two genera- tions. In the first stage, the metabolic activity of the microbes results in the pervasive precipitation of the filamentous Fe-rich oxides inside a ring formed by some amorphous opal and barite; therefore, a loose porous layer forms. In the second stage, amorphous opal then precipitates inside this wall as a result of conductive cooling and gradually controls the mixing between the hydrothermal fluids and ambient seawaters. In the third stage, barite and some amorphous opal form from the higher tem- perature fluids at the summit of the chimney growth history. In the last stage, the chimney wall becomes thicker and denser and the exchange of hydrothermal fluids and seawater ceases. As a result, a Fe-Mn oxide layer precipitates onto the outer surface of the chimney wall as neutrophilic Fe-oxidizing bacteria reoccupy the surface of the chimney. This mineral sequence and the resultant growth generations are confirmed by the chemical characteristics of the chimney wall. Sr isotopes extracted from the Fe oxides of the four-generation wall generally show a decreasing trend of the 87Sr/86Sr ratios from the second layer to the in- ner layer (from 0.707008 to 0.705877) except for the outer layer (0.706502). The Sr isotope and chondrite normalized REE patterns of the corresponding bulk samples from the chimney wall also display a similar trend. Our study shows that the bio- genic filament network plays a key role in the formation of the chimney in contrast to previous growth models of higher temperature chimneys, which often ignore the influence of biogenic factors.展开更多
The formation mechanism of the large hydrothermal sulfide deposit is a complex geological process involving many controlling factors. Mixing between hydrothermal fluid and seawater plays a key role in this process. Th...The formation mechanism of the large hydrothermal sulfide deposit is a complex geological process involving many controlling factors. Mixing between hydrothermal fluid and seawater plays a key role in this process. The results of the Ocean Drilling Program (ODP) indicate that mixing of the evolved seawater and hydrothermal fluid, which is wildly developed within the Trans-Atlantic Geo-Traverse (TAG) hydrothermal deposit, governs the internal structure and chemical compositions of the deposit to great extent. Taking the TAG field for example, the mixing processes of hydrothermal fluid with the seawater heated to different extent are calculated, so as to discuss the impact of hydrothermal fluid/seawater mixing on the formation process of the sulfide deposit. The results indicate that: (1) mixing between the heated seawater and hydrothermal fluid derived from the deep deposit is largely responsible for the wild precipitation of anhydrite within the TAG hydrothermal deposit; (2) 330-310℃ is a special temperature range in the mixing process; (3) the mixing and hydrothermal processes in different zones of the TAG hydrothermal deposit (TAG-1, TAG-2 and TAG-5, etc.) have been discussed based on the simulated results.展开更多
Serpentinization reactions are paramount to understand hydro-geothermal activity near plate boundaries and mafic–ultramafic massifs,as well as fluid and element transfer between the Earth’s mantle and crust.However,...Serpentinization reactions are paramount to understand hydro-geothermal activity near plate boundaries and mafic–ultramafic massifs,as well as fluid and element transfer between the Earth’s mantle and crust.However,fluid-rock element exchange and serpentinization kinetics under shallow hydrothermal conditions is still largely unconstrained.Here we present two constant temperature(230℃)time-series of natural peridotite(77.5%olivine;13.7%enstatite;6.8%diopside;2%spinel)serpentinization experiments:at 13.4 MPa;and 20.7 MPa.Al-enriched lizardite was the main secondary mineral in all runs after olivine(olv)and orthopyroxene(opx)serpentinization(without any detectable brucite,talc or magnetite),while primary spinel and diopside partially dissolved during the experiments.Initial serpentinization stages comprises intrinsically coupled reactions between olivine and enstatite,as Al and Si are progressively transferred from orthopyroxene-derived to olivine-derived serpentine,while the opposite is true for Mg and Fe,with homogenization of serpentines compositions after 40 days.The Ni/Cr ratios of serpentines,however,remain diagnostic of the respective primary mineral.Estimated average serpentine content indicates fast serpentinization rates of 0.55 wt.%·day^(-1)(0.26 mmol·day^(-1))and 0.26 wt.%·day^(-1)(0.13 mmol·day^(-1))at 13.4 and 20.7 MPa,respectively.Approximately 2x faster serpentinization kinetics at lower pressure is likely linked to enhanced spinel dissolution leading to one order of magnitude higher available Al,which accelerates olivine serpentinization while delays orthopyroxene dissolution.Additionally,time-dependent increase in solid products masses suggests rock volume expands linearly 0.37%±0.01%per serpentine wt.%independently of pressure.Mass balance constrains suggests olv:opx react at~5:2 and~3:2 M ratios,resulting in Si-deficient and Si-saturated serpentines at the end of the low-pressure series(13.4 MPa)and high-pressure series(20.7 MPa),respectively.Elevated starting peridotite olv:opx ratio(7.94:1)therefore indicates orthopyroxene serpentinization is~3.3x and~5.4x faster than olivine at 13.4 MPa and 20.7 MPa,respectively.This contradicts previous assumptions that olivine should dissolve faster than orthopyroxene at experimental conditions.Finally,serpentinization-derived fluids develop pH>10 and become enriched in H_(2),CH_(4),Ca^(2+)and Si within 6 weeks.Aqueous silica concentrations are highest after 5 days(265.75 and 194.79µmol/kg)and progressively decrease,reaching 13.84 and 91.54µmol/kg at 13.4 and 20.7 MPa after 40 days,respectively.These concentrations are very similar to the low-silica(M6)and high-silica(Beehive)endmembers of the Lost City Hydrothermal Field(LCHF).Beyond fluid characteristics,serpentinization products and conditions analogous to the LCHF suggest similar mechanisms between our experiments and natural processes.Our results demonstrate constant temperature serpentinization of a common protolith leads to distinct serpentine and fluid compositions at different pressures.Although additional data is necessary,recent studies and our experiments suggest peridotite serpentinization rates at 230℃rapidly decrease with increasing pressures at least up to 35 MPa.Whether pressure directly influences olivine and orthopyroxene serpentinization kinetics or indirectly controls reaction rates due to spinel dissolution under hydrothermal conditions deserves further investigation.展开更多
Large superconducting Fe Se crystals of(001) orientation have been prepared via a hydrothermal ion release/introduction route for the first time. The hydrothermally derived Fe Se crystals are up to 10 mm×5 mm...Large superconducting Fe Se crystals of(001) orientation have been prepared via a hydrothermal ion release/introduction route for the first time. The hydrothermally derived Fe Se crystals are up to 10 mm×5 mm×0.3 mm in dimension. The pure tetragonal FeSe phase has been confirmed by x-ray diffraction(XRD) and the composition determined by both inductively coupled plasma atomic emission spectroscopy(ICP-AES) and energy dispersive x-ray spectroscopy(EDX). The superconducting transition of the Fe Se samples has been characterized by magnetic and transport measurements. The zero-temperature upper critical field H(c2) is calculated to be 13.2–16.7 T from a two-band model. The normal-state cooperative paramagnetism is found to be predominated by strong spin frustrations below the characteristic temperature T(sn), where the Ising spin nematicity has been discerned in the FeSe superconductor crystals as reported elsewhere.展开更多
The Rehai (Hot Sea) thermal field, being the strongest geothermal manifestation in the area, lies about 13 km southwest of Tengchong County. Most of its Tertiary granitic clasolites were intensely altered by the funct...The Rehai (Hot Sea) thermal field, being the strongest geothermal manifestation in the area, lies about 13 km southwest of Tengchong County. Most of its Tertiary granitic clasolites were intensely altered by the function of the acidic-neutral fluid ascending along the fault fissures. The most abundant altered minerals are kaolinites and illite-smectite (I-S) mixed layer minerals, the next are some alunite and silica minerals (hydrothermal quartz, chalcedony and opal), and a few chabazite and analcime are found. Zoning is a distinctive feature of the altered minerals at Rehai. This paper is mainly concerned with the hydrothermal clay minerals, the physical and chemical conditions prevailing during their formation, and the cause of zoning of the alteration.展开更多
基金Supported by the National Natural Science Foundation of China(No.41976075)the National Key Research and Development Program of China(No.2021YFF0501302)+1 种基金the Fundamental Research Funds for National Non-profit Institute Grant(No.JG 2103)the China Ocean Mineral Resources R&D Association Project(No.DY135-S 2-1-03)。
文摘A new hydrothermal field(Tianshi)was discovered on the rift valley wall through plume anomaly surveys and geological work conducted in 2012 and 2018 between 2°35′N and 2°43′N of the slow-spreading Carlsberg Ridge(CR).Here,the results of two expeditions conducted to detect and characterize the new hydrothermal field are reported.Mineralogical and geochemical data,as well as 14 C ages of a sediment core collected near the field are presented to reveal the hydrothermal history.Results show that the Tianshi field is a basalt-hosted hydrothermal system.Geochemical data of the sediments collected near the field indicate a strong hydrothermal contribution,and hydrothermal Fe and Cu fluxes range from 30 to 155 mg/(cm^(2)·ka)and 0.59 to 11.49 mg/(cm^(2)·ka),respectively.Temporal variations in the fluxes of hydrothermal Fe indicate that there have been at least three amplified hydrothermal venting events(H 1,H 2,and H 3)in the Tianshi field over the last 35.2 ka,in 28.6-35.2 ka BP,22.0-27.6 ka BP,and 1.2-11.4 ka BP,respectively.Hydrothermal event H 2 was driven by an increased magmatic production associated with sea level fall during the Last Glacial Maximum,while event H 3 was promoted by tectonic activity associated with a rapid sea level rise.This study further verified the role of sea level change in modulating hydrothermal activity on mid-ocean ridges.
基金The National Key Research and Development Program of China under contract Nos 2017YFC0306603,2018YFC0309901,2016YFC0304905,2017YFC0306803 and 2018YFC0309902the China Ocean Mineral Resources Research and Development Association Major Project under contract Nos DY135-S1-1-01 and DY135-S1-1-02
文摘The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. lourdanne hydrothermal field (27°51'S, 63°56'E) in 1998. During the COMRA DYl15-20 cruise in 2009, two additional hydrothermal fields (i.e., the Tiancheng (27°51'S, 63°55'E) and Tianzuo (27°57'S, 63°32'E) fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible liaolong in 2014-2015. The Tiancheng filed can he characterized as a low- temperature (up to 13.2℃) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.
基金This work was financially supported in part by the Pilot Project of Knowledge Innovation Project,Chinese Academy of Sciences under contract No.KZCX3-SW-223the Special Foundation for the Tenth Five Plan of COMR A under contract No.DY 105-01-03-1+1 种基金the National M ajor Fundamental Research and Development Project of China under contract No.G2000046701the National Natural Science Foundation of China under contract No.40376020,40176020.
文摘Helium, neon and argon isotope compositions of fluid inclusions have been measured in massive sulfide samples from theJade hydrothermal field in the central Okinawa Trough. Fluid-inclusion 3He/4He ratios are between 6.2 and 10.1 times theair value (Ra), and with a mean of 7.8Ra, which are consistent with the mid-ocean ridge basalt values [3He/4He≈(6Ra^11Ra)]. Values for 20Ne/22Ne are from 10.7 to 11.3, which are significantly higher than the atmospheric ratio (9.8).And the fluid-inclusion 40Ar/36Ar ratios range from 287 to 334, which are close to the atmosperic values (295.5). Theseresults indicate that the noble gases of trapped hydrothermal fluids in massive sulfides are a mixture of mantle- andseawater-derived components, and the helium of fluid inclusions is mainly from mantle, the nelium and argon isotopecompositions are mainly from seawater.
基金This work was financially supported in part by the National Natural Science Foundation of China under contract No. 40176020 the National Major Fundamental Research Development Project of China under contract No. G2000046703.
文摘Eighteen samples of hydrothermal sediments from the Jade hydrothermal field in the central Okinawa Trough have been analyzed. Sulfur isotopic values for 10 sulfide samples vary from 5.2× 10^(-3)to 7.2× 10^(-3), δ^(34)S values for 7 sulfate samples vary from 16.3 × 10^(-3) to 22.3 × 10^(-3), and 1 native sulphur sample has a δ^(34)S value of 8.2 × 10^(-3). The major sources of sulfur for hydrothermal sediment are intermediate to acid volcanic rocks and sea water sulfate, and it is possible that the partial sulfur of hydrothermal sediment is from the pelagic sediment by the interaction between hydrothermal fluid and sediment. The reasons of causing the distinct differences in sulfur isotopic values for sulfide samples from hydrothermal sediment ( compared with other hydrothermal fields), are the differences in the sources of sulfur, the magmatic activity and the tectonic evolution in different hydrothermal fields. The sulfur evolution is a long and complex process in the seafloor hydrothermal system, involving the ascending of heating sea water, the interaction between fluid and volcanic rocks, the mixing of sea water sulfate and sulfur from intermediate to acid volcanic rocks, and the fluid/pelagic-sediment interaction. And the interaction between sea water and intermediate to acid volcanic rocks is an important mechanism for the sulfur evolution in the Jade hydrothermal field.
基金The National Basic Research Program of China(973 Program)under contract No.2012CB417305China Ocean Mineral Resources R&D Association"Twelfth Five-Year"Major Program under contract Nos DY125-11-R-01 and DY125-11-R-05+1 种基金the Natural Science Foundation of Zhejiang Province under contract No.LY12D06006the scientific research fund of the Second Institute of Oceanography under contract No.JG1203
文摘Hydrothermal plume is an important constituent of seabed hydrothermal circulation and is also one of the characteristics of active hydrothermal vents. Portable Miniature Autonomous Plume Recorders (MAPR) attached to a towed deep-sea instrument was used to search for hydrothermal plumes and hydrothermal vents. We introduced the basic principle of MAPR based on deep towing technology to detect plumes, then analyzed the factors affecting the quality of the MAPR data and presented a data correction method for MAPR, including instrument location correction, noise reduction processing, system error elimination and seawater background reduction. Finally we applied the method to analyze MAPR data obtained during the Chinese DY115-21 cruise on R/VDayang Iin the “Precious Stone Mountain” hydrothermal field on the Gala-pagos Microplate. The results provided a better understanding of the distribution of the hydrothermal activ-ity in this field, indicating the presence of a new hydrothermal vent.
基金The National Basic Research Program(973 Program)of China under contract No.2012CB417305the China Ocean Mineral Resources Research and Development Association Twelfth Five-Year Major Program under contract Nos DY125-11-R-01 and DY125-11-R-05+2 种基金the International Cooperative Study on Hydrothermal System at Ultraslow Spreading SWIRthe Natural Science Foundation of Zhejiang Province of China under contract No.LY12D06006the Scientific Research Fund of Second Institute of Oceanography,State Oceanic Administration under contract No.JG1203
文摘Polymetalic sulfide is the main product of sea-floor hydrothermal venting, and has become an important sea-floor mineral resources for its rich in many kinds of precious metal elements. Since 2007, a number of investigations have been carried out by the China Ocean Mineral Resources Research and Development Association(COMRA)cruises(CCCs) along the Southwest Indian Ridge(SWIR). In 2011, the COMRA signed an exploration contract of sea-floor polymetallic sulfides of 10 000 km2 on the SWIR with the International Seabed Authority. Based on the multibeam data and shipborne gravity data obtained in 2010 by the R/V Dayang Yihao during the leg 6 of CCCs21, together with the global satellite surveys, the characteristics of gravity anomalies are analyzed in the Duanqiao hydrothermal field(37°39′S, 50°24′E). The "subarea calibration" terrain-correcting method is employed to calculate the Bouguer gravity anomaly, and the ocean bottom seismometer(OBS) profile is used to constrain the two-dimensional gravity anomaly simulation. The absent Moho in a previous seismic model is also calculated.The results show that the crustal thickness varies between 3 and 10 km along the profile, and the maximum crustal thickness reaches up to 10 km in the Duanqiao hydrothermal field with an average of 7.5 km. It is by far the most thicker crust discovered along the SWIR. The calculated crust thickness at the Longqi hydrothermal field is approximately 3 km, 1 km less than that indicated by seismic models, possibly due to the outcome of an oceanic core complex(OCC).
基金The National Basic Research Program(973 Program)of China under contract No.2013CB429702the National Oceanic Major Project of 12th Five Year under contract No.DY125-11-R-05
文摘A seafloor hydrothermal field, named Deyin-1 later, near 15°S southern Mid-Atlantic Ridge(SMAR) was newly found during the 22 nd cruise carried out by the China Ocean Mineral Resources Research & Development Association(COMRA). Sulfide samples were collected at three stations from the hydrothermal field during the26 th cruise in 2012. In this paper, mineralogical characteristics of the sulfides were analyzed with optical microscope, X-ray diffractometer, scanning electron microscope and electron microprobe to study the crystallization sequence of minerals and the process of hydrothermal mineralization. According to the difference of the ore-forming metal elements, the sulfide samples can be divided into three types:(1) the Ferich sulfide, which contains mainly pyrite and chalcopyrite;(2) the Fe-Cu-rich sulfide consisting predominantly of pyrite, chalcopyrite and isocubanite, with lesser amount of sphalerite, marmatite and pyrrhotine; and(3) the Fe-Zn-rich sulfide dominated by pyrite, sphalerite and marmatite, with variable amounts of chalcopyrite, isocubanite, pyrrhotine, marcasite, galena and gratonite. Mineral precipitations in these sulfides are in the sequence of chalcopyrite(isocubanite and possible coarse pyrite), fine pyrite,sphalerite(marmatite), galena, gratonite and then the minerals out of the dissolution. Two morphologically distinct generations(Py-I and Py-II) of pyrite are identified in each of the samples; inclusions of marmatite tend to exist in the coarse pyrite crystals(Py-I). Sphalerite in the Fe-Zn-rich sulfide is characterized by a"chalcopyrite disease" phenomenon. Mineral paragenetic relationships and a wide range of chemical compositions suggest that the environment of hydrothermal mineralization was largely changing. By comparison, the Fe-rich sulfide was formed in a relatively stable environment with a high temperature, but the conditions for the formation of the Fe-Cu-rich sulfide were variable. The Fe-Zn-rich sulfide was precipitated during the hydrothermal venting at relatively low temperature.
基金The National Key Basic Research Program of China under contract Nos 2013CB429700the National Special Fund for the 12th Five Year Plan of COMRA under contract Nos DY125-12-R-02 and DY125-12-R-05+3 种基金the National Natural Science Foundation of China under contract Nos 41325021,40830849,40976027 and 41476044the Shandong Province Natural Science Foundation of China for Distinguished Young Scholars under contract Nos JQ200913the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11030302the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Utilizing Si, Fe and Mn concentrations within the end-member PACMANUS hydrothermal fluid, Si-Fe-Mn-H2O Pourbaix diagrams were constructed at 300℃and 25℃. ThePourbaix diagrams show that the main Si, Fe and Mn oxides species precipitating from the hydrothermal fluid were SiO2, Fe(OH)3, Fe3(OH)8, Mn3O4, and Mn2O3at 25℃. During mixing of hydrothermal fluid with seawater, SiO2 precipitated earlier than Fe-Mn-oxyhydroxides because of the lower stability boundary. Then Fe(OH)2 precipitated first, followed by Fe3(OH)8 and Fe(OH)3, and last, small amounts of Mn3O4 and Mn2O3 precipitated. Fe(OH)3was readily de-posited in alkaline solution with little influence by Eh. There were many Si-Fe-Mn-concentric particles in the polished sections of the massive precipitates collected from PACMANUS. In the concentric nucleus and ellipsoid, Si oxides precipitated first before the hydrothermal fluid had mixed with seawater. In the concen-tric nucleus, after the precipitation of Si oxides, the increase of pH and Eh promoted the precipitation of Mn oxides around the Si oxides. In the large ellipsoid, the precipitation of Fe was divided into two periods. In the early period, increase of pH value of hydrothermal fluid produced by low-temperature convection and an input of a small volume of seawater promoted a small amount of Fe(OH)3 to precipitate in the Si-rich core. In the late period, after complete mixing with seawater and the resultant fluid was close to neutral or slightly alkaline in pH, Fe(OH)3was easily precipitated from the solution and distributed around the Si-rich core.
基金The Key-Area Research and Development Program of Guangdong Province under contract No.2020B1111010004the Science and Technology Program of Guangzhou,China under contract Nos 201804010264 and 201804010372+2 种基金the Guangdong MEPP Fund under contract No.GDOE[2019]A41the National Natural Science Foundation of China under contract No.91951201the China Ocean Mineral Resources R&D Association Project under contract No.DY135-S2-1-05。
文摘Hydrothermal venting has a profound effect on the chemical and biological properties of local and distal seawater and sediments. In this study, lipid biomarkers were analyzed to examine the potential influence of hydrothermal activity on the fate of organic matter(OM) in surface sediments around Tianxiu Hydrothermal Field in the Carlsberg Ridge(CR), Northwest Indian Ocean. By comparing the biomarker distributions of the samples with that of other typical hydrothermal sediments in the mid ocean ridge, it is shown that the location of the samples is not affected by the hydrothermal activity. The relatively low abundances of terrestrial n-alkyl lipids and riverine1,15-C_(32) diol suggested a minor contribution of terrigenous OM to the study area. The bacteria contributed predominantly to sedimentary marine OM;however, other marine source organisms, e.g., eukaryotes(i.e.,phytoplankton and fungi) could not be completely neglected. The marine-originated biomarkers showed significantly variable distributions between the two sediments, suggesting different dynamic physical and biogeochemical processes controlling the fate of marine OM. This study identified various diagnostic biomarkers(5,5-diethyl alkanes, diols and β-OH FAs), which may have significant environmental implications for future works in this region.
基金The National Natural Science Foundation of China under contract No.42127807the Key R&D Program of Zhejiang Province under contract No.2021C03016+3 种基金the National Key R&D Program of China under contract No.2017YFC0208401the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract Nos SL2020MS033,SL2020ZD205 and SL2104the Scientific Research Fund of Second Institute of Oceanography under contract Nos SL2020MS033,SL2020ZD205 and SL2104the Talent Cultivation Project of Zhejiang Association for Science and Technology under contract No.SKX201901。
文摘The stress state and rock mechanical properties govern the growth of faults and fractures,which constitute shallow hydrothermal pathways and control the distribution of seafloor massive sulfide(SMS)mounds in the seafloor hydrothermal field.The stress field has an important influence on the formation and persistence of hydrothermal pathways.Based on multibeam bathymetric data from the Trans-Atlantic Geotraverse(TAG)field,we establish two three-dimensional geological models with different scales to simulate the stress field,which investigate the characteristics of hydrothermal pathways and associated SMS mounds.The simulation results show that oblique faults and fissures form in the tensile stress zone and that mounds,including active and inactive hydrothermal mounds form in the compressive stress zone.Fault activity,which is related to the stress field,affects the opening and closing of hydrothermal channels and changes the permeability structure of subseafloor wall rock.Therefore,the stress field controls the development and persistence of shallow hydrothermal pathways.The features of shallow hydrothermal pathways in the stress field can provide geomechanical information that is useful for identifying favorable zone for SMS deposit formation.
基金The National Key Basic Research Program of China under contract No.2013CB429700the National Special Fund for the 12th Five Year Plan of COMRA under contract No.DY125-12-R-05+3 种基金the National Special Fund for the 12th Five Year Plan of COMRA under contract Nos DY125-12-R-02 and DY125-11-R-05the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11030302the National Natural Science Foundation of China under contract Nos 41325021,40830849 and 40976027Shandong Province Natural Science Foundation of China for Distinguished Young Scholars under contract No.JQ200913
文摘Si-Fe-Mn-oxyhydroxides dredged at the PACMANUS (Papua New Guinea-Australia-Canada-Manus) hydrothermal field, Eastern Manus Basin, have 87Sr/SSSr=0.708 079-0.708 581; eNd=5.149 833-6.534 826; 208pb/204pb=38.245-38.440; 207pb/204pb=lS.503-15.560; 206pb/204pb=lS.682-18.783. s7sr/sSSr isotope ratios are relatively homogeneous and close to the value of the surrounding seawater (0.709 16). The content of Sr in the samples contributed by seawater was estimated to be 76.7%-83.1% of total amount. The mixing temperature of hydrothermal fluids and seawater were ranging from 53.2℃ to 72.2℃ and the hydrothermal activities were unstable when the samples precipitated. The eNd values of all the samples are positive, which differ from the values of ferromanganese nodules (crusts) with hydrogenic origin. Nd was mainly derived from substrate rocks leached by hydrothermal circulation and preserved the hydrothermal signature. Ph isotopic compositions of most samples show minor variability except Sample #9-2 that has relatively high values of Pb isotopes. The Pb may be derived from the Eastern Manus Basin rocks leached by the hydrothermal fluid. The slightly lower 28pb/204pb and 207pb/204pb values of the samples indicated that the hydrothermal circulation in PACMANUS was not entire and sufficient, or that hydrothermal circulation had transient changes in the past. Si-Fe-Mn-oxyhydroxides in the samples preserved the heterogeneities of local rocks.
基金supported by National Natural Science Foundation of China(Grant No.40830849)National Key Basic Research Program of China(Grant No.2013CB429700)+1 种基金Shandong Province Natural Science Foundation of China for Distin-guished Young Scholars(Grant No.JQ200913)the Pilot Project of Knowledge Innovation Project,Chinese Academy of Sciences(Grant No.KZCX2-YW-211)
文摘The mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the dacite-hosted PACMANUS hydrothermal field were analyzed.The samples are poorly crystallized Si-Fe-Mn oxyhydroxides with minor birnessite, todorokite, nontronite, goethite, and opal-A.There are some microtextures which are rather like fossil microbes such as the filamentous silica and the hollow pipes.Flakes of nontronite crystals are found either forming a honeycomb texture or distrib- uted on the surface of the hollow pipes.Nontronite is the product precipitated from low-temperature hydrothermal fluids, and microbes may play a role in its formation.Si-Fe-Mn oxyhydroxides have two kinds of nuclei: Si-Mn nuclei and Si nuclei, both enveloped by the similar Si-Fe outer layer, existing in the rod-shaped oxyhydroxide and spheroidal oxyhydroxide, respectively.In the Si-Mn nuclei, the concentration of SiO2 is between 39.32 wt% and 86.31 wt%, and MnO concentration is between 4.97 wt% and 27.01 wt%, but Fe2O3 concentration is very low (0.54 wt%-3.43 wt%).In the Si nucleus the concentration of SiO2 is 90.17 wt%, but concentration of MnO and Fe2O3 are low, with 0.06 wt% and 3.47 wt%, respectively.The formation of the Si-Mn nucleus is closely related to microbes, whereas the Si nucleus is of inorganic origin.
基金The authors would like to thank Prof. Zhao Yiyang, Prof. Li Jincheng, Dr. Li Yanhe, Dr. Chu Feng-you for their critical review and constructive comments for improving the manuscript This work was financially supported in part by the Natural Science Fou
文摘Helium, neon and argon isotope compositions of fluid inclusionshave been measured in hydrothermal sulfide samples from the TAG hydrothermal field at the Mid-Atlantic Ridge. Fluid-inclusion 3He/4He ratios are 2.2-13.3 times the air value (Ra), and with a mean of 7.2 Ra. Com-parison with the local vent fluids (3He/4He=7.5-8.2 Ra) and mid-ocean ridge basalt values (3He/4He=6-11 Ra) shows that the variation range of 3He/4He ratios from sulfide-hosted fluid inclu-sions is significantly large. Values for 20Ne/22Ne are from 10.2 to 11.4, which are significantly higher than the atmospheric ratio (9.8). And fluid-inclusion 40Ar/36Ar ratios range from 287 to 359, which are close to the atmospheric values (295.5). These results indicate that the noble gases of fluid inclu-sions in hydrothermal sulfides are a mixture of mantle- and seawater-derived noble gases; the partial mantle-derived components of trapped hydrothermal fluids may be from the lower mantle; the helium of fluid inclusions is mainly from upper mantle; and the Ne and Ar components are mainly from seawater.
基金supported by National Natural Science Foundation of China(Grant Nos.40976045,40976025 and 41006072)
文摘The CDE hydrothermal field was first discovered during a Chinese cruise to the East Lau Basin Spreading Centre in 2007. Apart from significant amounts of loose Fe-Si-Mn (oxyhydr) oxide (referred to as oxide below) precipitates, a small Si-rich oxide chimney was also recovered on this cruise. In this study, we report on the mineralogical and geochemical analyses of this chimney and a model for its growth that has been developed. Based on the mineralogy and O isotope results, the chimney walls can be divided into four growth generations (layers) from the inner to the outer layers: amorphous opal and barite layer (pre- cipitation temperature 68.5℃ based on oxygen isotope determinations), a rod-like amorphous layer (precipitation temperature 39.6℃), a filamentous Fe-Si oxide layer, and an outer Fe-Mn oxide layer. Investigations based on SEM and EDS showed that neutrophilic Fe-oxidizing bacteria play an important role in the formation of this chimney, particularly in the outer two genera- tions. In the first stage, the metabolic activity of the microbes results in the pervasive precipitation of the filamentous Fe-rich oxides inside a ring formed by some amorphous opal and barite; therefore, a loose porous layer forms. In the second stage, amorphous opal then precipitates inside this wall as a result of conductive cooling and gradually controls the mixing between the hydrothermal fluids and ambient seawaters. In the third stage, barite and some amorphous opal form from the higher tem- perature fluids at the summit of the chimney growth history. In the last stage, the chimney wall becomes thicker and denser and the exchange of hydrothermal fluids and seawater ceases. As a result, a Fe-Mn oxide layer precipitates onto the outer surface of the chimney wall as neutrophilic Fe-oxidizing bacteria reoccupy the surface of the chimney. This mineral sequence and the resultant growth generations are confirmed by the chemical characteristics of the chimney wall. Sr isotopes extracted from the Fe oxides of the four-generation wall generally show a decreasing trend of the 87Sr/86Sr ratios from the second layer to the in- ner layer (from 0.707008 to 0.705877) except for the outer layer (0.706502). The Sr isotope and chondrite normalized REE patterns of the corresponding bulk samples from the chimney wall also display a similar trend. Our study shows that the bio- genic filament network plays a key role in the formation of the chimney in contrast to previous growth models of higher temperature chimneys, which often ignore the influence of biogenic factors.
基金China Ocean Mineral Resources Research and Development Association program under contract No. DY115-02-1-01the National Basic Research Program of China ("973" Program) under contract No.G2000078503
文摘The formation mechanism of the large hydrothermal sulfide deposit is a complex geological process involving many controlling factors. Mixing between hydrothermal fluid and seawater plays a key role in this process. The results of the Ocean Drilling Program (ODP) indicate that mixing of the evolved seawater and hydrothermal fluid, which is wildly developed within the Trans-Atlantic Geo-Traverse (TAG) hydrothermal deposit, governs the internal structure and chemical compositions of the deposit to great extent. Taking the TAG field for example, the mixing processes of hydrothermal fluid with the seawater heated to different extent are calculated, so as to discuss the impact of hydrothermal fluid/seawater mixing on the formation process of the sulfide deposit. The results indicate that: (1) mixing between the heated seawater and hydrothermal fluid derived from the deep deposit is largely responsible for the wild precipitation of anhydrite within the TAG hydrothermal deposit; (2) 330-310℃ is a special temperature range in the mixing process; (3) the mixing and hydrothermal processes in different zones of the TAG hydrothermal deposit (TAG-1, TAG-2 and TAG-5, etc.) have been discussed based on the simulated results.
基金We thank Petrobras for sponsoring the grad studies of the main author and its financial support through project 8310-0 FAURGS-UFRGS-PETROBRAS.
文摘Serpentinization reactions are paramount to understand hydro-geothermal activity near plate boundaries and mafic–ultramafic massifs,as well as fluid and element transfer between the Earth’s mantle and crust.However,fluid-rock element exchange and serpentinization kinetics under shallow hydrothermal conditions is still largely unconstrained.Here we present two constant temperature(230℃)time-series of natural peridotite(77.5%olivine;13.7%enstatite;6.8%diopside;2%spinel)serpentinization experiments:at 13.4 MPa;and 20.7 MPa.Al-enriched lizardite was the main secondary mineral in all runs after olivine(olv)and orthopyroxene(opx)serpentinization(without any detectable brucite,talc or magnetite),while primary spinel and diopside partially dissolved during the experiments.Initial serpentinization stages comprises intrinsically coupled reactions between olivine and enstatite,as Al and Si are progressively transferred from orthopyroxene-derived to olivine-derived serpentine,while the opposite is true for Mg and Fe,with homogenization of serpentines compositions after 40 days.The Ni/Cr ratios of serpentines,however,remain diagnostic of the respective primary mineral.Estimated average serpentine content indicates fast serpentinization rates of 0.55 wt.%·day^(-1)(0.26 mmol·day^(-1))and 0.26 wt.%·day^(-1)(0.13 mmol·day^(-1))at 13.4 and 20.7 MPa,respectively.Approximately 2x faster serpentinization kinetics at lower pressure is likely linked to enhanced spinel dissolution leading to one order of magnitude higher available Al,which accelerates olivine serpentinization while delays orthopyroxene dissolution.Additionally,time-dependent increase in solid products masses suggests rock volume expands linearly 0.37%±0.01%per serpentine wt.%independently of pressure.Mass balance constrains suggests olv:opx react at~5:2 and~3:2 M ratios,resulting in Si-deficient and Si-saturated serpentines at the end of the low-pressure series(13.4 MPa)and high-pressure series(20.7 MPa),respectively.Elevated starting peridotite olv:opx ratio(7.94:1)therefore indicates orthopyroxene serpentinization is~3.3x and~5.4x faster than olivine at 13.4 MPa and 20.7 MPa,respectively.This contradicts previous assumptions that olivine should dissolve faster than orthopyroxene at experimental conditions.Finally,serpentinization-derived fluids develop pH>10 and become enriched in H_(2),CH_(4),Ca^(2+)and Si within 6 weeks.Aqueous silica concentrations are highest after 5 days(265.75 and 194.79µmol/kg)and progressively decrease,reaching 13.84 and 91.54µmol/kg at 13.4 and 20.7 MPa after 40 days,respectively.These concentrations are very similar to the low-silica(M6)and high-silica(Beehive)endmembers of the Lost City Hydrothermal Field(LCHF).Beyond fluid characteristics,serpentinization products and conditions analogous to the LCHF suggest similar mechanisms between our experiments and natural processes.Our results demonstrate constant temperature serpentinization of a common protolith leads to distinct serpentine and fluid compositions at different pressures.Although additional data is necessary,recent studies and our experiments suggest peridotite serpentinization rates at 230℃rapidly decrease with increasing pressures at least up to 35 MPa.Whether pressure directly influences olivine and orthopyroxene serpentinization kinetics or indirectly controls reaction rates due to spinel dissolution under hydrothermal conditions deserves further investigation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574370,11274358,and 11190020)the National Basic Research Program of China(Grant No.2013CB921700)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020100)
文摘Large superconducting Fe Se crystals of(001) orientation have been prepared via a hydrothermal ion release/introduction route for the first time. The hydrothermally derived Fe Se crystals are up to 10 mm×5 mm×0.3 mm in dimension. The pure tetragonal FeSe phase has been confirmed by x-ray diffraction(XRD) and the composition determined by both inductively coupled plasma atomic emission spectroscopy(ICP-AES) and energy dispersive x-ray spectroscopy(EDX). The superconducting transition of the Fe Se samples has been characterized by magnetic and transport measurements. The zero-temperature upper critical field H(c2) is calculated to be 13.2–16.7 T from a two-band model. The normal-state cooperative paramagnetism is found to be predominated by strong spin frustrations below the characteristic temperature T(sn), where the Ising spin nematicity has been discerned in the FeSe superconductor crystals as reported elsewhere.
文摘The Rehai (Hot Sea) thermal field, being the strongest geothermal manifestation in the area, lies about 13 km southwest of Tengchong County. Most of its Tertiary granitic clasolites were intensely altered by the function of the acidic-neutral fluid ascending along the fault fissures. The most abundant altered minerals are kaolinites and illite-smectite (I-S) mixed layer minerals, the next are some alunite and silica minerals (hydrothermal quartz, chalcedony and opal), and a few chabazite and analcime are found. Zoning is a distinctive feature of the altered minerals at Rehai. This paper is mainly concerned with the hydrothermal clay minerals, the physical and chemical conditions prevailing during their formation, and the cause of zoning of the alteration.