In the present study hydroxyapatite (HA) nano-hexagonal rods with 70-90 nm diameter and 400-500 nm length are synthesized using a simple sol-gel route with calcium nitrate and potassium dihydrogenphosphate as calciu...In the present study hydroxyapatite (HA) nano-hexagonal rods with 70-90 nm diameter and 400-500 nm length are synthesized using a simple sol-gel route with calcium nitrate and potassium dihydrogenphosphate as calcium and phosphorus precursors respectively. Deionized water was used as a diluting media for HA sol preparation and ammonia was used to adjust the pH = 9. After aging, the HA gel was dried at 60 ℃ and calcined at different temperatures ranging from 300 to 700 ℃. The dried and calcined powders were characterized for phase composition using X-ray diffractrometry, elemental dispersive X-ray and Fourier transform infrared spectroscopy. Rietveld analysis showed the calcined HA powders of high purity with a hexagonal unit cell structure. Calcination yielded HA nanopowders of increased particle size and crystallinity with increase in temperature. The particle size and morphology was studied using transmission electron microscopy. The aspect ratio (length to diameter ratio) of HA nanorods was measured to be between 6 and 7.展开更多
The particle formation mechanism of hydroxyapatite precursor containing two components, Ca(OOCCH3)2 and (NH4)2HPO4 with a ratio of Ca/P = 1.67, in a spray pyrolysis process has been studied by computational fluid ...The particle formation mechanism of hydroxyapatite precursor containing two components, Ca(OOCCH3)2 and (NH4)2HPO4 with a ratio of Ca/P = 1.67, in a spray pyrolysis process has been studied by computational fluid dynamics (CFD) simulation on the transfer of heat and mass from droplets to the surrounding media. The focus included the evaporation of the solvent in the droplets, a second evaporation due to crust formation, the decomposition reaction of each component of the precursor, and a solid-state reaction that included the kinetic parameters of the precursor regarding its two components that formed the hydroxyapatite product. The rate of evaporation and the reacted fraction of the precursor both increased with temperature. The predicted average size of the hydroxyapatite particles agreed well with the experimental results. Therefore, the selected models were also suitable for predicting the average size of particles that contain two components in the precursor solution.展开更多
文摘In the present study hydroxyapatite (HA) nano-hexagonal rods with 70-90 nm diameter and 400-500 nm length are synthesized using a simple sol-gel route with calcium nitrate and potassium dihydrogenphosphate as calcium and phosphorus precursors respectively. Deionized water was used as a diluting media for HA sol preparation and ammonia was used to adjust the pH = 9. After aging, the HA gel was dried at 60 ℃ and calcined at different temperatures ranging from 300 to 700 ℃. The dried and calcined powders were characterized for phase composition using X-ray diffractrometry, elemental dispersive X-ray and Fourier transform infrared spectroscopy. Rietveld analysis showed the calcined HA powders of high purity with a hexagonal unit cell structure. Calcination yielded HA nanopowders of increased particle size and crystallinity with increase in temperature. The particle size and morphology was studied using transmission electron microscopy. The aspect ratio (length to diameter ratio) of HA nanorods was measured to be between 6 and 7.
文摘The particle formation mechanism of hydroxyapatite precursor containing two components, Ca(OOCCH3)2 and (NH4)2HPO4 with a ratio of Ca/P = 1.67, in a spray pyrolysis process has been studied by computational fluid dynamics (CFD) simulation on the transfer of heat and mass from droplets to the surrounding media. The focus included the evaporation of the solvent in the droplets, a second evaporation due to crust formation, the decomposition reaction of each component of the precursor, and a solid-state reaction that included the kinetic parameters of the precursor regarding its two components that formed the hydroxyapatite product. The rate of evaporation and the reacted fraction of the precursor both increased with temperature. The predicted average size of the hydroxyapatite particles agreed well with the experimental results. Therefore, the selected models were also suitable for predicting the average size of particles that contain two components in the precursor solution.