期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Photooxidation of arsenic(Ⅲ) to arsenic(Ⅴ) on the surface of kaolinite clay 被引量:4
1
作者 Wei Ding Yajie Wang +3 位作者 Yingtan Yu Xiangzhi Zhang Jinjun Li Feng Wu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第10期29-37,共9页
As one of the most toxic heavy metals, the oxidation of inorganic arsenic has drawn great attention among environmental scientists. However, little has been reported on the solar photochemical behavior of arsenic spec... As one of the most toxic heavy metals, the oxidation of inorganic arsenic has drawn great attention among environmental scientists. However, little has been reported on the solar photochemical behavior of arsenic species on top-soil. In the present work, the influencing factors(p H, relative humidity(RH), humic acid(HA), trisodium citrate, and additional iron ions) and the contributions of reactive oxygen species(ROS, mainly HO^- and HO2^-/O2^-) to photooxidation of As(Ⅲ) to As(Ⅴ) on kaolinite surfaces under UV irradiation(λ = 365 nm)were investigated. Results showed that lower p H facilitated photooxidation, and the photooxidation efficiency increased with the increase of RH and trisodium citrate.Promotion or inhibition of As(Ⅲ) photooxidation by HA was observed at low or high dosages, respectively. Additional iron ions greatly promoted the photooxidation, but excessive amounts of Fe^2+competed with As(Ⅲ) for oxidation by ROS. Experiments on scavengers indicated that the HOUradical was the predominant oxidant in this system.Experiments on actual soil surfaces proved the occurrence of As(Ⅲ) photooxidation in real topsoil. This work demonstrates that the photooxidation process of As(Ⅲ) on the soil surface should be taken into account when studying the fate of arsenic in natural soil newly polluted with acidic wastewater containing As(Ⅲ). 展开更多
关键词 Photochemical oxidation Arsenic speciation Soil clay minerals iron species hydroxyl radical
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部