PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can l...PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease.However,there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration.Additionally,PINK1 knockout pigs(Sus scrofa)do not appear to exhibit neurodegeneration.In our recent work involving non-human primates,we found that PINK1 is selectively expressed in primate brains,while absent in rodent brains.To extend this to other species,we used multiple antibodies to examine the expression of PINK1 in pig tissues.In contrast to tissues from cynomolgus monkeys(Macaca fascicularis),our data did not convincingly demonstrate detectable PINK1expression in pig tissues.Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation,as observed in cultured monkey cells.A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain.Consistently,PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD.These findings provide new evidence that PINK1expression is specific to primates,underscoring the importance of non-human primates in investigating PINK1function and pathology related to PINK1 deficiency.展开更多
Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the pho...Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.展开更多
Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell ac...Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell acute lymphoblastic leukemia(B-ALL),however,is currently unclear.Thus,in the present study,the role of YAP1 in B-ALL was investigated using relevant cell lines and patient datasets.Methods The effects of shRNA-mediated knockdown on YAP1 and LATS1 levels in the NALM6 and MOLT-4 cell lines were examined using Western blotting,quantitative real-time polymerase chain reaction,flow cytometry,immunostaining,and nude mouse subcutaneous tumorigenesis experiments.Gene expression levels of Hippo pathway-related molecules before and after verteporfin(VP)treatment were compared using RNA-Seq to identify significant Hippo pathway-related genes in NALM6 cells.Results Patients with ALL showing high YAP1 expression and low YAP1-Ser127 phosphorylation levels had worse prognoses than those with low YAP1 protein expression and high YAP1-Ser127 phosphorylation levels.YAP1-Ser127 phosphorylation levels were lower in NALM6 cells than in MOLT-4 and control cells;YAP1 was distributed in the nuclei in NALM6 cells.Knockdown of YAP1 inhibited MOLT-4 and NALM6 cell proliferation and arrested the NALM6 cell cycle in the G0/G1 phase.Before and after VP treatment,the expression of the upstream gene LATS1 was upregulated;its overexpression promoted YAP1-Ser127 phosphorylation.Further,YAP1 was distributed in the plasma.Conclusion LATS1 may downregulate YAP1-Ser127 phosphorylation and maintain B-ALL cell function;thus,VP,which targets this axis,may serve as a new therapeutic method for improving the outcomes for B-ALL patients.展开更多
Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis ...Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation,we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog,Nanorana parkeri,living on the Qinghai-Xizang Plateau.In total,5170 proteins and 5695 phosphorylation sites in 1938 proteins were quantified.Based on proteomic analysis,674 differentially expressed proteins(438 up-regulated,236 down-regulated)were screened in hibernating N.parkeri versus summer individuals.Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways,whereas lower expressed proteins were mainly involved in metabolic processes.A total of 4251 modified sites(4147 up-regulated,104 down-regulated)belonging to 1638 phosphoproteins(1555 up-regulated,83 down-regulated)were significantly changed in the liver.During hibernation,RPP regulated a diverse array of proteins involved in multiple functions,including metabolic enzymatic activity,ion transport,protein turnover,signal transduction,and alternative splicing.These changes contribute to enhancing protection,suppressing energy-consuming processes,and inducing metabolic depression.Moreover,the activities of phosphofructokinase,glutamate dehydrogenase,and ATPase were all significantly lower in winter compared to summer.In conclusion,our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.展开更多
Mitochondrial disorders are phenotypically varied, with serious clinical repercussions. Among them, there is the deficiency of combined oxidative phosphorylation of type 20, which occurs due to a defect in the VARS2 g...Mitochondrial disorders are phenotypically varied, with serious clinical repercussions. Among them, there is the deficiency of combined oxidative phosphorylation of type 20, which occurs due to a defect in the VARS2 gene. This article presents a case of a 2-year-old female with progressive myoclonic epilepsy and psychomotor regression, with refractoriness to multiple anticonvulsants. The diagnosis was only made after the examination was carried out. Therefore, this article highlights the aspects of this rare disease and the importance of the exome for the diagnosis of rare conditions.展开更多
Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and...Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and mechanisms of the essential oil,the main active ingredient of Cymbopogon citratus,on isoproterenol(ISO)-induced cardiomyocyte hypertrophy.Methods:The compositions of Cymbopogon citratus essential oil(CCEO)were determined by gas chromatography-mass spectrometry.Cardiomyocytes were pretreated with 16.9µg/L CCEO for 1 h followed by 10µmol/L ISO for 24 h.Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated.Subsequently,transcriptome sequencing(RNA-seq)and target verification were used to further explore the underlying mechanism.Results:Our results showed that the CCEO mainly included citronellal(45.66%),geraniol(23.32%),and citronellol(10.37%).CCEO inhibited ISO-induced increases in cell surface area and protein content,as well as the upregulation of fetal gene expression.Moreover,CCEO inhibited ISO-induced NLRP3 inflammasome expression,as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3,ASC,CASP1,GSDMD,and IL-1β,as well as reduced protein levels of NLRP3,ASC,pro-caspase-1,caspase-1(p20),GSDMD-FL,GSDMD-N,and pro-IL-1β.The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes.Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1,Sdhd,mt-Cytb,Uqcrq,and mt-Atp6 but had no obvious effects on mt-Col expression.Conclusion:CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.展开更多
The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)inductio...The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)induction causing NSCLC cell metastasis,the underlying mechanism remains unclear.In the study,we found that IL-17 receptor A(IL-17RA),p300,p-STAT3,Ack-STAT3,and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17.p300,STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3,Ack-STAT3 and MMP19 level as well as the cell migration and invasion.Mechanism investigation revealed that STAT3 and p300 bound to the same region(−544 to−389 nt)of MMP19 promoter,and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity,p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17.Meanwhile,p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact,synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion.Besides,the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300,STAT3 or MMP19 gene plus IL-17 treatment,the nodule number,and MMP19,Ack-STAT3,or p-STAT3 production in the lung metastatic nodules were all alleviated.Collectively,these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation,which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.展开更多
Astrocytes and microglia play an orchestrated role following spinal cord injury;however,the molecular mechanisms through which microglia regulate astrocytes after spinal cord injury are not yet fully understood.Herein...Astrocytes and microglia play an orchestrated role following spinal cord injury;however,the molecular mechanisms through which microglia regulate astrocytes after spinal cord injury are not yet fully understood.Herein,microglia were pharmacologically depleted and the effects on the astrocytic response were examined.We further explored the potential mechanisms involving the signal transducers and activators of transcription 3(STAT3)pathway.For in vivo experiments,we constructed a contusion spinal cord injury model in C57BL/6 mice.To deplete microglia,all mice were treated with colony-stimulating factor 1 receptor inhibitor PLX3397,starting 2 weeks prior to surgery until they were sacrificed.Cell proliferation was examined by 5-ethynyl-2-deoxyuridine(EdU)and three pivotal inflammatory cytokines were detected by a specific Bio-Plex Pro^(TM) Reagent Kit.Locomotor function,neuroinflammation,astrocyte activation and phosphorylated STAT3(pSTAT3,a maker of activation of STAT3 signaling)levels were determined.For in vitro experiments,a microglia and astrocyte coculture system was established,and the small molecule STA21,which blocks STAT3 activation,was applied to investigate whether STAT3 signaling is involved in mediating astrocyte proliferation induced by microglia.PLX3397 administration disrupted glial scar formation,increased inflammatory spillover,induced diffuse tissue damage and impaired functional recovery after spinal cord injury.Microglial depletion markedly reduced EdU+proliferating cells,especially proliferating astrocytes at 7 days after spinal cord injury.RNA sequencing analysis showed that the JAK/STAT3 pathway was downregulated in mice treated with PLX3397.Double immunofluorescence staining confirmed that PLX3397 significantly decreased STAT3 expression in astrocytes.Importantly,in vitro coculture of astrocytes and microglia showed that microglia-induced astrocyte proliferation was abolished by STA21 administration.These findings suggest that microglial depletion impaired astrocyte proliferation and astrocytic scar formation,and induced inflammatory diffusion partly by inhibiting STAT3 phosphorylation in astrocytes following spinal cord injury.展开更多
The uptake of ammonium,nitrate,phosphorus,and potassium ions by roots is mediated by specific ion transporter or channel proteins,and protein phosphorylation regulation events occurring on these proteins and their reg...The uptake of ammonium,nitrate,phosphorus,and potassium ions by roots is mediated by specific ion transporter or channel proteins,and protein phosphorylation regulation events occurring on these proteins and their regulators determine their ultimate activity.Elucidating the mechanism by which protein phosphorylation modification regulates nutrient uptake will advance plant breeding for high nutrientuse efficiency.In this review,it is concluded that the root nutrient absorption system is composed of several,but not all,members of a specific ion transporter or channel family.Under nutrient-starvation conditions,protein phosphorylation-based regulation of these proteins and associated transcription factors increases ion transporter-or channel-mediated nutrient uptake capacity via direct function activity enhancement,allowing more protein trafficking to the plasma membrane,by strengthening the interaction of transporters and channels with partner proteins,by increasing their protein stability,and by transcriptional activation.Under excessive nutrient conditions,protein phosphorylation-based regulation suppresses nutrient uptake by reversing these processes.Strengthening phosphorylation regulation items that increase nutrient absorption and weakening phosphorylation modification items that are not conducive to nutrient absorption show potential as strategies for increasing nutrient use efficiency.展开更多
The degradation of titin could make the myofibrillar fragmentation to improve meat tenderization during postmortem.This study aimed to investigate effect of phosphorylation on titin degradation.Protein kinase A(PKA)an...The degradation of titin could make the myofibrillar fragmentation to improve meat tenderization during postmortem.This study aimed to investigate effect of phosphorylation on titin degradation.Protein kinase A(PKA)and alkaline phosphatase(AP)were added to crude titin extracted from ovine longissimus lumborum(LL)muscles.Phosphorylated/dephosphorylated titin were incubated withμ-calpain at 4℃ for 2 days.Results showed titin in AP group started degradation earlier than that in PKA and control groups.There were 20,16 and 12 phosphorylated sites identified by iTRAQ in the PKA,control and AP group,respectively.3D structure of dephosphorylated titin fragment was simulated and its molecular dynamics trajectory analysis was performed using Discovery StudioTM.The dihedral angle in AP group was less and the dephosphorylated fragment had a higher kinetic energy and total energy.We suggested that changes caused by AP treatment might make titin unstable,which easily degraded byμ-calpain.展开更多
Benzo[a]pyrene(B[a]P)is a food contaminant toxic for cardiovascular diseases.The nuclear translocation of Arylhydrocarbon receptor(AhR)plays an important role in B[a]P-induced oxidative stress and vascular diseases.We...Benzo[a]pyrene(B[a]P)is a food contaminant toxic for cardiovascular diseases.The nuclear translocation of Arylhydrocarbon receptor(AhR)plays an important role in B[a]P-induced oxidative stress and vascular diseases.We confi rmed that B[a]P promoted ROS production in vascular smooth muscle cells(VSMCs)in vitro and in vivo,associated with the nuclear translocation of AhR.It is known that phosphorylation inhibits while dephosphorylation of AhR promotes nuclear translocation of AhR.However,from the posttranslational modifi cation level,the mechanism by which B[a]P activates and regulates the nuclear translocation of AhR is unclear.Co-immunoprecipitation results showed that cytoplasmic AhR was phosphorylated before B[a]P stimulation,and switched to O-GlcNAcylation upon B[a]P 1-h stimulation in VSMCs,suggesting there may be a competitively inhibitory relationship between O-GlcNAcylation and phosphorylation of AhR.Next,siRNAs of O-linked N-acetylglucosamine transferase(OGT),O-GlcNAcase(OGA)and OGA inhibitor PUGNAc were used.SiOGT blocks but siOGA and PUGNAc promote B[a]P-dependent AhR nuclear translocation and oxidative stress.Ser11 may be the competitive binding site for phosphorylation and O-GlcNAcylation of AhR.Phosphorylation-mimic variant inhibits but O-GlcNAcylation of AhR promotes AhR nuclear translocation and oxidative stress.Our fi ndings highlight a new perspective for AhR nuclear translocation regulated by the competitive modifi cation between phosphorylation and O-GlcNAcylation.展开更多
The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineer...The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineered to establish an ion-sieving barrier against polysulfide shuttling and thereby improve battery performance.The phosphorylation,involving the grafting of phosphate groups onto the cellulose backbone,imparts an exceptional electronegativity that repels the polysulfide anions from penetrating through the separator.Moreover,the electrolyte wettability and Li^(+)transfer can be significantly promoted by the polar nature of pCNF and the facile Li^(+)disassociation.As such,rational ion management is realized,contributing to enhanced reversibility in both sulfur and lithium electrochemistry.As a result,Li-S cells equipped with the self-standing pCNF separator demonstrate outstanding long-term cyclability with a minimum fading rate of 0.013%per cycle over 1000 cycles at 1 C,and a decent areal capacity of 5.37 mA h cm^(-2) even under elevated sulfur loading of 5.0 mg cm^(-2) and limited electrolyte of 6.0 mL g^(-1).This work provides a facile and effective pathway toward the well-tamed shuttle effect and highly durable Li-S batteries.展开更多
Poststro ke cognitive impairment is a major secondary effect of ischemic stroke in many patients;however,few options are available for the early diagnosis and treatment of this condition.The aims of this study were to...Poststro ke cognitive impairment is a major secondary effect of ischemic stroke in many patients;however,few options are available for the early diagnosis and treatment of this condition.The aims of this study were to(1)determine the specific relationship between hypoxic andα-synuclein during the occur of poststroke cognitive impairment and(2)assess whether the serum phosphorylatedα-synuclein level can be used as a biomarker for poststro ke cognitive impairment.We found that the phosphorylatedα-synuclein level was significantly increased and showed pathological aggregation around the cerebral infa rct area in a mouse model of ischemic stroke.In addition,neuronalα-synuclein phosphorylation and aggregation were observed in the brain tissue of mice subjected to chronic hypoxia,suggesting that hypoxia is the underlying cause ofα-synuclein-mediated pathology in the brains of mice with ischemic stroke.Serum phosphorylatedα-synuclein levels in patients with ischemic stroke were significantly lower than those in healt hy subjects,and were positively correlated with cognition levels in patients with ischemic stroke.Furthermore,a decrease in serum high-density lipoprotein levels in stroke patie nts was significantly correlated with a decrease in phosphorylatedα-synuclein levels.Although ischemic stroke mice did not show significant cognitive impairment or disrupted lipid metabolism 14 days after injury,some of them exhibited decreased cognitive function and reduced phosphorylatedα-synuclein levels.Taken together,our results suggest that serum phosphorylatedα-synuclein is a potential biomarker for poststroke cognitive impairment.展开更多
Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive t...Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.展开更多
3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins are a kind of lipid-lowering agents and have been used for the prevention and treatment of Cardiovascular diseases. Recent studies sug...3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins are a kind of lipid-lowering agents and have been used for the prevention and treatment of Cardiovascular diseases. Recent studies suggested that statins, besides lowering cholesterol, may protect vessels by enhancing the activity of endothelial nitric oxide synthase (eNOS). In the present study, we investigated if simvastatin increases eNOS activity through its phosphorylation in 293 cells (293-eNOS) with stable expression of eNOS. The results showed that incubation of 293-eNOS cells with simvastatin (10 μm/L) for 2 h significantly increased in the activity of eNOS as shown by the conversion of L-arginine to L-citrulline (2889.70±201.51 versus 5630.18+218.75 pmol/min . mg proteins) (P〈0.01). Western blotting revealed that simvastatin increased phosphorylation of eNOS at 1177 (ser) and also 495 (thr) but did not affect the overall expression of eNOS or inducible NOS. Further study found that simvastatin raised phosphorylation levels of Akt and AMPK, and such effect could be antagonized by Akt inhibitor or AMPK inhibitor. These results suggest that simvastatin could stimulate,the activity of eNOS via its phosphorylation by Akt and AMPK, which provides a new mechanism, other than lipid-lowering effect, for the cardiovascular protection of statins.展开更多
The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein ...The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein in OV2008 cells and C13K cells were semi-quantitatively detected by using RT-PCR and Western blotting. Recombinant eukaryotic expression plasmid containing human wild-type PTEN gene was transfected into C13K cells by lipofectamine2000. The expression of PTEN mRNA was monitored by RT-PCR and the expression of PTEN, Akt, p-Akt protein were ana- lyzed by Western blotting in PTEN-transfected and non-transfected C13K cells. Proliferation and chemosensitivity of cells to DDP were measured by MTT, and cell apoptosis was detected by flow cytometry after treatment with cisplatin. The expression of PTEN mRNA and protein in OV2008 cells were significantly higher than those in C13K cells. After transfection with PTEN gene for 48 h, the expression of PTEN mRNA and protein in C 13K cells were 2.04 ± 0.10, 0.94± 0.04 respectively and the expression of p-Akt protein ( 0.94± 0.07) was lower than those in control groups (1.68 ±0.14, 1.66± 0.10) (P〈 0.05). The IC50 of DDP to C 13 K cells transfected with PTEN (7.2± 0.3 la mol/L) was obviously lower than those of empty-vector transfected cells and non-transfected cells (12.7±0.4 lamol/1, 13.0±0.3 lamol/L) (P〈0.05). The apopototis ratio of wild-type PTEN-transfected, empty vector transfected and non-transfected C13K cells were (41.65___0.87)%, (18.61 ±0.70)% and (15.28±0.80)% respectively, and the difference was statistically significant (P〈0.05). PTEN gene plays an important role in ovarian cancer multidrug resistance. Transfection of PTEN could increase the expression of PTEN and restore drug sensitivity to cisplatin in human ovarian cancer cell line C 13K with multidrug-resistance by decreasing the expression of p-Akt.展开更多
The clinical significance of phosphatase and tensin homolog deleted on chromosome ten (PTEN) protein expression and the correlation between the expression of PTEN and phosphorylation of protein kinase B (PKB/AKT) in h...The clinical significance of phosphatase and tensin homolog deleted on chromosome ten (PTEN) protein expression and the correlation between the expression of PTEN and phosphorylation of protein kinase B (PKB/AKT) in human hepatocellular carcinoma (HCC) were investigated. The expression of PTEN and phospho-AKT was detected by SP immunohistochemical technique and Western blotting in 35 cases of HCC, 15 cases of liver cirrhosis and 8 cases of normal tissues. The correlation between the expression of PTEN and PKB/AKT in HCC was analyzed. The results showed that the positive expression of PTEN in HCC (62.9 %, 0.085±0.021) was significantly lower than that in liver cirrhosis and normal tissues (P<0.01). The expression level of PTEN was related to the differentiation degree of HCC and the status of metastasis (P<0.05). Western blotting revealed a significant inverse correlation between PTEN and phospho-AKT (r=-0.818, P<0.01). These results demonstrated that down-regulation or loss of PTEN, which may not be able to effectively inhibit the hyper-phosphorylation of PKB/AKT, might play an important role in tumorigenesis and progression of HCC.展开更多
LHCII is a crucial light-harvesting pigment/protein complex in photosystem II (PSII) supercomplex. It also participates in the light energy redistribution between photosystems and in the photoprotection via its revers...LHCII is a crucial light-harvesting pigment/protein complex in photosystem II (PSII) supercomplex. It also participates in the light energy redistribution between photosystems and in the photoprotection via its reversible dissociation with PSII and PSI (photosystem I). This reversible detachment of LHCII is regulated by phosphorylation of its own and PSII core protein. Under low light conditions, LHCII is phosphorylated and dissociated with PSII core protein complex and combined with PSI, which balances the excitation energy between PSII and PSI;Under high light environment, the phosphorylation of PSII core proteins makes LHCII detach from PSII. The dissociated LHCII presents in a free state, which involves in the thermal dissipation of excess excitation energy. During photodamage, dual phosphorylations of both PSII core proteins and LHCII complexes occur. The phosphorylation of D1 is conductive to the disintegration of photodamaged PSII and the cycle of repair. In this circumstance, the phosphorylation of LHCII is induced by reactive oxygen species (ROS) and then the phosphorylated LHCII migrates to PSI, into the repair cycle of damaged PSII. The ferredoxin (Fdr) and thioredoxin (Tdr) system may play a possible central role in the phosphorylation regulation on LHCII dissociation.展开更多
The role of the endoplasmic reticulum in Alzheimer's disease pathogenesis remains poody understood.The present study investigated the correlation of okadaic acid-induced tau hyperphosphorylation and neurotoxicity wit...The role of the endoplasmic reticulum in Alzheimer's disease pathogenesis remains poody understood.The present study investigated the correlation of okadaic acid-induced tau hyperphosphorylation and neurotoxicity with endoplasmic reticulum stress.Following co-culture of various concentrations of okadaic acid (25,50,100,and 200 nmol/L) and human neuroblastoma SH-SY5Y cells,okadaic acid,a selective protein phosphatase (PP-1,PP-2A) inhibitor,reduced cell viability in a concentration-dependent manner,which was closely associated with okadaic acid-induced tau phosphorylation.In addition,expressions of the unfolded protein response activation marker glucose-regulated protein 78 (BiP/Grp78) and the CCAAT/enhancer binding protein homologous protein (CHOP)/Gadd153 increased following okadaic acid treatment.Furthermore,the unfolded protein response was activated in human embryonic kidney 293 (HEK 293) cells overexpressing tau following okadaic acid treatment,but untransfected HEK 293 cells did not exhibit activation of the unfolded protein response.These data indicate that endoplasmic reticulum stress is involved in mechanisms underlying tau phosphorylation and the cytotoxic effects of okadaic acid.展开更多
Enamelin (ENAM) has three putative phosphoserines (pSers) phosphorylated by a Golgi-associated secretory pathway kinase (FAM20C) based on their distinctive Ser-x-Glu (S-x-E) motifs. Fam2OC-knockout mice show s...Enamelin (ENAM) has three putative phosphoserines (pSers) phosphorylated by a Golgi-associated secretory pathway kinase (FAM20C) based on their distinctive Ser-x-Glu (S-x-E) motifs. Fam2OC-knockout mice show severe enamel defects similar to those in the Enam-knockout mice, implying an important role of the pSers in ENAM. To determine the role of pSer5s in ENAM, we characterized ENAMRgsc514 mice, in which Sers5 cannot be phosphorylated by FAM20C due to an E57〉Gs7 mutation in the S-x-E motif, The enamel microstructure of 4-week-old mice was examined by scanning electron microscopy. The teeth of 6-day-old mice were characterized by histology and immunohistochemistry. The protein lysates of the first lower molars of 4-day-old mice were analyzed by Western immunoblotting using antibodies against ENAM, ameloblastin and amelogenin. ENAMRgsc514 heterozygotes showed a disorganized enamel microstructure, while the homozygotes had no enamel on the dentin surface. The N-terminal fragments of ENAM in the heterozygotes were detained in the ameloblasts and localized in the mineralization front of enamel matrix, while those in the WT mice were secreted out of ameloblasts and distributed evenly in the outer 1/2 of enamel matrix. Surprisingly, the 15 kDa C-terminal fragments of ameloblastin were not detected in the molar lysates of the homozygotes. These results suggest that the phosphorylation of SerSS may be an essential posttranslational modification of ENAM and is required for the interaction with other enamel matrix molecules such as ameloblastin in mediating the structural organization of enamel matrix and protein-mineral interactions during enamel formation.展开更多
基金supported by the National Natural Science Foundation of China (32070534,32370567,82371874,81830032,31872779,82071421,81873736)Key Field Research and Development Program of Guangdong Province (2018B030337001)+3 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006)Guangdong Basic and Applied Basic Research Foundation (2023B1515020031,2022A1515012301)Fundamental Research Funds for the Central Universities (Jinan University,21620358)。
文摘PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease.However,there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration.Additionally,PINK1 knockout pigs(Sus scrofa)do not appear to exhibit neurodegeneration.In our recent work involving non-human primates,we found that PINK1 is selectively expressed in primate brains,while absent in rodent brains.To extend this to other species,we used multiple antibodies to examine the expression of PINK1 in pig tissues.In contrast to tissues from cynomolgus monkeys(Macaca fascicularis),our data did not convincingly demonstrate detectable PINK1expression in pig tissues.Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation,as observed in cultured monkey cells.A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain.Consistently,PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD.These findings provide new evidence that PINK1expression is specific to primates,underscoring the importance of non-human primates in investigating PINK1function and pathology related to PINK1 deficiency.
基金supported by the European Regional Development Funds-European Union(ERDF-EU),FATZHEIMER project(EU-LAC HEALTH 2020,16/T010131 to FRdF),“Una manera de hacer Europa”Ministerio de Economía,Industria y Competitividad,Gobierno de Espa?a,Programa Estatal de Investigación,Desarrollo e Innovación Orientada a los Retos de la Sociedad(RTC2019-007329-1 to FRdF)+2 种基金Consejería de Economía,Conocimiento y Universidad,Junta de Andalucía,Plan Andaluz de Investigación,Desarrollo e Innovación(P18TP-5194 to FRdF)Instituto de Salud CarlosⅢ(DTS22/00021 to FRdF)DMV(FI20/00227)holds a“PFIS’’predoctoral contract from the National System of Health,EU-ERDF-Instituto de Salud CarlosⅢ。
文摘Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
文摘Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell acute lymphoblastic leukemia(B-ALL),however,is currently unclear.Thus,in the present study,the role of YAP1 in B-ALL was investigated using relevant cell lines and patient datasets.Methods The effects of shRNA-mediated knockdown on YAP1 and LATS1 levels in the NALM6 and MOLT-4 cell lines were examined using Western blotting,quantitative real-time polymerase chain reaction,flow cytometry,immunostaining,and nude mouse subcutaneous tumorigenesis experiments.Gene expression levels of Hippo pathway-related molecules before and after verteporfin(VP)treatment were compared using RNA-Seq to identify significant Hippo pathway-related genes in NALM6 cells.Results Patients with ALL showing high YAP1 expression and low YAP1-Ser127 phosphorylation levels had worse prognoses than those with low YAP1 protein expression and high YAP1-Ser127 phosphorylation levels.YAP1-Ser127 phosphorylation levels were lower in NALM6 cells than in MOLT-4 and control cells;YAP1 was distributed in the nuclei in NALM6 cells.Knockdown of YAP1 inhibited MOLT-4 and NALM6 cell proliferation and arrested the NALM6 cell cycle in the G0/G1 phase.Before and after VP treatment,the expression of the upstream gene LATS1 was upregulated;its overexpression promoted YAP1-Ser127 phosphorylation.Further,YAP1 was distributed in the plasma.Conclusion LATS1 may downregulate YAP1-Ser127 phosphorylation and maintain B-ALL cell function;thus,VP,which targets this axis,may serve as a new therapeutic method for improving the outcomes for B-ALL patients.
基金supported by the National Natural Science Foundation of China(32001110)Training Program for Cultivating Highlevel Talents by the China Scholarship Council(2021lxjjw01)Open Project of State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University(2021-KF-004)。
文摘Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation,we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog,Nanorana parkeri,living on the Qinghai-Xizang Plateau.In total,5170 proteins and 5695 phosphorylation sites in 1938 proteins were quantified.Based on proteomic analysis,674 differentially expressed proteins(438 up-regulated,236 down-regulated)were screened in hibernating N.parkeri versus summer individuals.Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways,whereas lower expressed proteins were mainly involved in metabolic processes.A total of 4251 modified sites(4147 up-regulated,104 down-regulated)belonging to 1638 phosphoproteins(1555 up-regulated,83 down-regulated)were significantly changed in the liver.During hibernation,RPP regulated a diverse array of proteins involved in multiple functions,including metabolic enzymatic activity,ion transport,protein turnover,signal transduction,and alternative splicing.These changes contribute to enhancing protection,suppressing energy-consuming processes,and inducing metabolic depression.Moreover,the activities of phosphofructokinase,glutamate dehydrogenase,and ATPase were all significantly lower in winter compared to summer.In conclusion,our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.
文摘Mitochondrial disorders are phenotypically varied, with serious clinical repercussions. Among them, there is the deficiency of combined oxidative phosphorylation of type 20, which occurs due to a defect in the VARS2 gene. This article presents a case of a 2-year-old female with progressive myoclonic epilepsy and psychomotor regression, with refractoriness to multiple anticonvulsants. The diagnosis was only made after the examination was carried out. Therefore, this article highlights the aspects of this rare disease and the importance of the exome for the diagnosis of rare conditions.
基金supported by grants from the National Natural Science Foundation of China(Nos.81960732 and 82060733)the Natural Science Foundation of Jiangxi Province(No.20224BAB206111)+2 种基金the Science and Technology Plan of Jiangxi Provincial Health Commission(No.202311141)the Open Project of Jiangxi Provincial Key Laboratory of Drug Design and Evaluation(No.JKLDE-KF-2101)the Open Project of Key Laboratory of Modern Preparation of TCM,Ministry of Education,Jiangxi University of Chinese Medicine(No.TCM-201911).
文摘Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and mechanisms of the essential oil,the main active ingredient of Cymbopogon citratus,on isoproterenol(ISO)-induced cardiomyocyte hypertrophy.Methods:The compositions of Cymbopogon citratus essential oil(CCEO)were determined by gas chromatography-mass spectrometry.Cardiomyocytes were pretreated with 16.9µg/L CCEO for 1 h followed by 10µmol/L ISO for 24 h.Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated.Subsequently,transcriptome sequencing(RNA-seq)and target verification were used to further explore the underlying mechanism.Results:Our results showed that the CCEO mainly included citronellal(45.66%),geraniol(23.32%),and citronellol(10.37%).CCEO inhibited ISO-induced increases in cell surface area and protein content,as well as the upregulation of fetal gene expression.Moreover,CCEO inhibited ISO-induced NLRP3 inflammasome expression,as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3,ASC,CASP1,GSDMD,and IL-1β,as well as reduced protein levels of NLRP3,ASC,pro-caspase-1,caspase-1(p20),GSDMD-FL,GSDMD-N,and pro-IL-1β.The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes.Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1,Sdhd,mt-Cytb,Uqcrq,and mt-Atp6 but had no obvious effects on mt-Col expression.Conclusion:CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.
基金National Natural Science Foundation of China(Grants Numbers 81902878 and 81971468).
文摘The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)induction causing NSCLC cell metastasis,the underlying mechanism remains unclear.In the study,we found that IL-17 receptor A(IL-17RA),p300,p-STAT3,Ack-STAT3,and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17.p300,STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3,Ack-STAT3 and MMP19 level as well as the cell migration and invasion.Mechanism investigation revealed that STAT3 and p300 bound to the same region(−544 to−389 nt)of MMP19 promoter,and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity,p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17.Meanwhile,p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact,synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion.Besides,the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300,STAT3 or MMP19 gene plus IL-17 treatment,the nodule number,and MMP19,Ack-STAT3,or p-STAT3 production in the lung metastatic nodules were all alleviated.Collectively,these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation,which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.
基金supported by the Natural Science Foundation of Guangdong Province,No.2020A1515010090(to ZLZ)the Science and Technology Project Foundation of Guangzhou City,No.202002030004(to HZ).
文摘Astrocytes and microglia play an orchestrated role following spinal cord injury;however,the molecular mechanisms through which microglia regulate astrocytes after spinal cord injury are not yet fully understood.Herein,microglia were pharmacologically depleted and the effects on the astrocytic response were examined.We further explored the potential mechanisms involving the signal transducers and activators of transcription 3(STAT3)pathway.For in vivo experiments,we constructed a contusion spinal cord injury model in C57BL/6 mice.To deplete microglia,all mice were treated with colony-stimulating factor 1 receptor inhibitor PLX3397,starting 2 weeks prior to surgery until they were sacrificed.Cell proliferation was examined by 5-ethynyl-2-deoxyuridine(EdU)and three pivotal inflammatory cytokines were detected by a specific Bio-Plex Pro^(TM) Reagent Kit.Locomotor function,neuroinflammation,astrocyte activation and phosphorylated STAT3(pSTAT3,a maker of activation of STAT3 signaling)levels were determined.For in vitro experiments,a microglia and astrocyte coculture system was established,and the small molecule STA21,which blocks STAT3 activation,was applied to investigate whether STAT3 signaling is involved in mediating astrocyte proliferation induced by microglia.PLX3397 administration disrupted glial scar formation,increased inflammatory spillover,induced diffuse tissue damage and impaired functional recovery after spinal cord injury.Microglial depletion markedly reduced EdU+proliferating cells,especially proliferating astrocytes at 7 days after spinal cord injury.RNA sequencing analysis showed that the JAK/STAT3 pathway was downregulated in mice treated with PLX3397.Double immunofluorescence staining confirmed that PLX3397 significantly decreased STAT3 expression in astrocytes.Importantly,in vitro coculture of astrocytes and microglia showed that microglia-induced astrocyte proliferation was abolished by STA21 administration.These findings suggest that microglial depletion impaired astrocyte proliferation and astrocytic scar formation,and induced inflammatory diffusion partly by inhibiting STAT3 phosphorylation in astrocytes following spinal cord injury.
基金supported by the Jiangsu Provincial DoubleInnovation Doctor Program(JSSCBS20221643)the Jiangsu Institute of Botany Talent Fund(JIBTF202210)+2 种基金the Program for the Young Innovative Talents of Jiangsu Vocational College of Agriculture and Forest(2021kj26)the National Natural Science Foundation of China(32101429)Natural Science Foundation of Jiangsu Province,China(BK20200288)。
文摘The uptake of ammonium,nitrate,phosphorus,and potassium ions by roots is mediated by specific ion transporter or channel proteins,and protein phosphorylation regulation events occurring on these proteins and their regulators determine their ultimate activity.Elucidating the mechanism by which protein phosphorylation modification regulates nutrient uptake will advance plant breeding for high nutrientuse efficiency.In this review,it is concluded that the root nutrient absorption system is composed of several,but not all,members of a specific ion transporter or channel family.Under nutrient-starvation conditions,protein phosphorylation-based regulation of these proteins and associated transcription factors increases ion transporter-or channel-mediated nutrient uptake capacity via direct function activity enhancement,allowing more protein trafficking to the plasma membrane,by strengthening the interaction of transporters and channels with partner proteins,by increasing their protein stability,and by transcriptional activation.Under excessive nutrient conditions,protein phosphorylation-based regulation suppresses nutrient uptake by reversing these processes.Strengthening phosphorylation regulation items that increase nutrient absorption and weakening phosphorylation modification items that are not conducive to nutrient absorption show potential as strategies for increasing nutrient use efficiency.
基金financially supported by National Natural Science Foundation(32102035)the Agricultural Science and Technology Innovation Program(CAAS-ASTIP-2020-IFST-03)Central Public-interest Scientific Institution Basal Research(S2019RCJC01,S2020JBKY-16).
文摘The degradation of titin could make the myofibrillar fragmentation to improve meat tenderization during postmortem.This study aimed to investigate effect of phosphorylation on titin degradation.Protein kinase A(PKA)and alkaline phosphatase(AP)were added to crude titin extracted from ovine longissimus lumborum(LL)muscles.Phosphorylated/dephosphorylated titin were incubated withμ-calpain at 4℃ for 2 days.Results showed titin in AP group started degradation earlier than that in PKA and control groups.There were 20,16 and 12 phosphorylated sites identified by iTRAQ in the PKA,control and AP group,respectively.3D structure of dephosphorylated titin fragment was simulated and its molecular dynamics trajectory analysis was performed using Discovery StudioTM.The dihedral angle in AP group was less and the dephosphorylated fragment had a higher kinetic energy and total energy.We suggested that changes caused by AP treatment might make titin unstable,which easily degraded byμ-calpain.
基金supported by the National Key Research Project of China(2022YFF1100300)National Natural Science Foundation of China(32272328)+5 种基金Natural Science Foundation of Hebei Province(B2022321001)Major Public Welfare Projects in Henan Province(201300110200)National Key Research Project of Hebei Province(20375502D)National Key Research Project of Hebei Province(H2021206427)University Science and Technology Research Project of Hebei Province(QN2017107)Postdoctoral Research Funds of Hebei Medical University(307050100163759).
文摘Benzo[a]pyrene(B[a]P)is a food contaminant toxic for cardiovascular diseases.The nuclear translocation of Arylhydrocarbon receptor(AhR)plays an important role in B[a]P-induced oxidative stress and vascular diseases.We confi rmed that B[a]P promoted ROS production in vascular smooth muscle cells(VSMCs)in vitro and in vivo,associated with the nuclear translocation of AhR.It is known that phosphorylation inhibits while dephosphorylation of AhR promotes nuclear translocation of AhR.However,from the posttranslational modifi cation level,the mechanism by which B[a]P activates and regulates the nuclear translocation of AhR is unclear.Co-immunoprecipitation results showed that cytoplasmic AhR was phosphorylated before B[a]P stimulation,and switched to O-GlcNAcylation upon B[a]P 1-h stimulation in VSMCs,suggesting there may be a competitively inhibitory relationship between O-GlcNAcylation and phosphorylation of AhR.Next,siRNAs of O-linked N-acetylglucosamine transferase(OGT),O-GlcNAcase(OGA)and OGA inhibitor PUGNAc were used.SiOGT blocks but siOGA and PUGNAc promote B[a]P-dependent AhR nuclear translocation and oxidative stress.Ser11 may be the competitive binding site for phosphorylation and O-GlcNAcylation of AhR.Phosphorylation-mimic variant inhibits but O-GlcNAcylation of AhR promotes AhR nuclear translocation and oxidative stress.Our fi ndings highlight a new perspective for AhR nuclear translocation regulated by the competitive modifi cation between phosphorylation and O-GlcNAcylation.
基金the financial support from the National Natural Science Foundation of China(22109072)the Natural Science Foundation of Jiangsu Province(BK20210349)+1 种基金the Fundamental Research Funds for the Central Universities(30922010304)the Open Fund of National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials(2022KFJJ06)。
文摘The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineered to establish an ion-sieving barrier against polysulfide shuttling and thereby improve battery performance.The phosphorylation,involving the grafting of phosphate groups onto the cellulose backbone,imparts an exceptional electronegativity that repels the polysulfide anions from penetrating through the separator.Moreover,the electrolyte wettability and Li^(+)transfer can be significantly promoted by the polar nature of pCNF and the facile Li^(+)disassociation.As such,rational ion management is realized,contributing to enhanced reversibility in both sulfur and lithium electrochemistry.As a result,Li-S cells equipped with the self-standing pCNF separator demonstrate outstanding long-term cyclability with a minimum fading rate of 0.013%per cycle over 1000 cycles at 1 C,and a decent areal capacity of 5.37 mA h cm^(-2) even under elevated sulfur loading of 5.0 mg cm^(-2) and limited electrolyte of 6.0 mL g^(-1).This work provides a facile and effective pathway toward the well-tamed shuttle effect and highly durable Li-S batteries.
基金supported by the Scientific Research Project of China Rehabilitation Research Center,No.2021zx-23the National Natural Science Foundation of China,No.32100925the Beijing Nova Program,No.Z211100002121038。
文摘Poststro ke cognitive impairment is a major secondary effect of ischemic stroke in many patients;however,few options are available for the early diagnosis and treatment of this condition.The aims of this study were to(1)determine the specific relationship between hypoxic andα-synuclein during the occur of poststroke cognitive impairment and(2)assess whether the serum phosphorylatedα-synuclein level can be used as a biomarker for poststro ke cognitive impairment.We found that the phosphorylatedα-synuclein level was significantly increased and showed pathological aggregation around the cerebral infa rct area in a mouse model of ischemic stroke.In addition,neuronalα-synuclein phosphorylation and aggregation were observed in the brain tissue of mice subjected to chronic hypoxia,suggesting that hypoxia is the underlying cause ofα-synuclein-mediated pathology in the brains of mice with ischemic stroke.Serum phosphorylatedα-synuclein levels in patients with ischemic stroke were significantly lower than those in healt hy subjects,and were positively correlated with cognition levels in patients with ischemic stroke.Furthermore,a decrease in serum high-density lipoprotein levels in stroke patie nts was significantly correlated with a decrease in phosphorylatedα-synuclein levels.Although ischemic stroke mice did not show significant cognitive impairment or disrupted lipid metabolism 14 days after injury,some of them exhibited decreased cognitive function and reduced phosphorylatedα-synuclein levels.Taken together,our results suggest that serum phosphorylatedα-synuclein is a potential biomarker for poststroke cognitive impairment.
文摘Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.
基金supported by grants from National Natural Sciences Foundation of China (No. 30430320 and 30770882)National 973 Project (No. 2007CB512004)
文摘3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins are a kind of lipid-lowering agents and have been used for the prevention and treatment of Cardiovascular diseases. Recent studies suggested that statins, besides lowering cholesterol, may protect vessels by enhancing the activity of endothelial nitric oxide synthase (eNOS). In the present study, we investigated if simvastatin increases eNOS activity through its phosphorylation in 293 cells (293-eNOS) with stable expression of eNOS. The results showed that incubation of 293-eNOS cells with simvastatin (10 μm/L) for 2 h significantly increased in the activity of eNOS as shown by the conversion of L-arginine to L-citrulline (2889.70±201.51 versus 5630.18+218.75 pmol/min . mg proteins) (P〈0.01). Western blotting revealed that simvastatin increased phosphorylation of eNOS at 1177 (ser) and also 495 (thr) but did not affect the overall expression of eNOS or inducible NOS. Further study found that simvastatin raised phosphorylation levels of Akt and AMPK, and such effect could be antagonized by Akt inhibitor or AMPK inhibitor. These results suggest that simvastatin could stimulate,the activity of eNOS via its phosphorylation by Akt and AMPK, which provides a new mechanism, other than lipid-lowering effect, for the cardiovascular protection of statins.
基金a grant from the National Natural Sciences Foundation of China (No. 30571950)National Key Basic Research Program Foundation (N0.2002CB513107).
文摘The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein in OV2008 cells and C13K cells were semi-quantitatively detected by using RT-PCR and Western blotting. Recombinant eukaryotic expression plasmid containing human wild-type PTEN gene was transfected into C13K cells by lipofectamine2000. The expression of PTEN mRNA was monitored by RT-PCR and the expression of PTEN, Akt, p-Akt protein were ana- lyzed by Western blotting in PTEN-transfected and non-transfected C13K cells. Proliferation and chemosensitivity of cells to DDP were measured by MTT, and cell apoptosis was detected by flow cytometry after treatment with cisplatin. The expression of PTEN mRNA and protein in OV2008 cells were significantly higher than those in C13K cells. After transfection with PTEN gene for 48 h, the expression of PTEN mRNA and protein in C 13K cells were 2.04 ± 0.10, 0.94± 0.04 respectively and the expression of p-Akt protein ( 0.94± 0.07) was lower than those in control groups (1.68 ±0.14, 1.66± 0.10) (P〈 0.05). The IC50 of DDP to C 13 K cells transfected with PTEN (7.2± 0.3 la mol/L) was obviously lower than those of empty-vector transfected cells and non-transfected cells (12.7±0.4 lamol/1, 13.0±0.3 lamol/L) (P〈0.05). The apopototis ratio of wild-type PTEN-transfected, empty vector transfected and non-transfected C13K cells were (41.65___0.87)%, (18.61 ±0.70)% and (15.28±0.80)% respectively, and the difference was statistically significant (P〈0.05). PTEN gene plays an important role in ovarian cancer multidrug resistance. Transfection of PTEN could increase the expression of PTEN and restore drug sensitivity to cisplatin in human ovarian cancer cell line C 13K with multidrug-resistance by decreasing the expression of p-Akt.
文摘The clinical significance of phosphatase and tensin homolog deleted on chromosome ten (PTEN) protein expression and the correlation between the expression of PTEN and phosphorylation of protein kinase B (PKB/AKT) in human hepatocellular carcinoma (HCC) were investigated. The expression of PTEN and phospho-AKT was detected by SP immunohistochemical technique and Western blotting in 35 cases of HCC, 15 cases of liver cirrhosis and 8 cases of normal tissues. The correlation between the expression of PTEN and PKB/AKT in HCC was analyzed. The results showed that the positive expression of PTEN in HCC (62.9 %, 0.085±0.021) was significantly lower than that in liver cirrhosis and normal tissues (P<0.01). The expression level of PTEN was related to the differentiation degree of HCC and the status of metastasis (P<0.05). Western blotting revealed a significant inverse correlation between PTEN and phospho-AKT (r=-0.818, P<0.01). These results demonstrated that down-regulation or loss of PTEN, which may not be able to effectively inhibit the hyper-phosphorylation of PKB/AKT, might play an important role in tumorigenesis and progression of HCC.
文摘LHCII is a crucial light-harvesting pigment/protein complex in photosystem II (PSII) supercomplex. It also participates in the light energy redistribution between photosystems and in the photoprotection via its reversible dissociation with PSII and PSI (photosystem I). This reversible detachment of LHCII is regulated by phosphorylation of its own and PSII core protein. Under low light conditions, LHCII is phosphorylated and dissociated with PSII core protein complex and combined with PSI, which balances the excitation energy between PSII and PSI;Under high light environment, the phosphorylation of PSII core proteins makes LHCII detach from PSII. The dissociated LHCII presents in a free state, which involves in the thermal dissipation of excess excitation energy. During photodamage, dual phosphorylations of both PSII core proteins and LHCII complexes occur. The phosphorylation of D1 is conductive to the disintegration of photodamaged PSII and the cycle of repair. In this circumstance, the phosphorylation of LHCII is induced by reactive oxygen species (ROS) and then the phosphorylated LHCII migrates to PSI, into the repair cycle of damaged PSII. The ferredoxin (Fdr) and thioredoxin (Tdr) system may play a possible central role in the phosphorylation regulation on LHCII dissociation.
基金the National Natural Science Foundation of China, No. 3077255730870881
文摘The role of the endoplasmic reticulum in Alzheimer's disease pathogenesis remains poody understood.The present study investigated the correlation of okadaic acid-induced tau hyperphosphorylation and neurotoxicity with endoplasmic reticulum stress.Following co-culture of various concentrations of okadaic acid (25,50,100,and 200 nmol/L) and human neuroblastoma SH-SY5Y cells,okadaic acid,a selective protein phosphatase (PP-1,PP-2A) inhibitor,reduced cell viability in a concentration-dependent manner,which was closely associated with okadaic acid-induced tau phosphorylation.In addition,expressions of the unfolded protein response activation marker glucose-regulated protein 78 (BiP/Grp78) and the CCAAT/enhancer binding protein homologous protein (CHOP)/Gadd153 increased following okadaic acid treatment.Furthermore,the unfolded protein response was activated in human embryonic kidney 293 (HEK 293) cells overexpressing tau following okadaic acid treatment,but untransfected HEK 293 cells did not exhibit activation of the unfolded protein response.These data indicate that endoplasmic reticulum stress is involved in mechanisms underlying tau phosphorylation and the cytotoxic effects of okadaic acid.
基金supported by NIH grant DE026461start funding of Texas A&M University College of Dentistry
文摘Enamelin (ENAM) has three putative phosphoserines (pSers) phosphorylated by a Golgi-associated secretory pathway kinase (FAM20C) based on their distinctive Ser-x-Glu (S-x-E) motifs. Fam2OC-knockout mice show severe enamel defects similar to those in the Enam-knockout mice, implying an important role of the pSers in ENAM. To determine the role of pSer5s in ENAM, we characterized ENAMRgsc514 mice, in which Sers5 cannot be phosphorylated by FAM20C due to an E57〉Gs7 mutation in the S-x-E motif, The enamel microstructure of 4-week-old mice was examined by scanning electron microscopy. The teeth of 6-day-old mice were characterized by histology and immunohistochemistry. The protein lysates of the first lower molars of 4-day-old mice were analyzed by Western immunoblotting using antibodies against ENAM, ameloblastin and amelogenin. ENAMRgsc514 heterozygotes showed a disorganized enamel microstructure, while the homozygotes had no enamel on the dentin surface. The N-terminal fragments of ENAM in the heterozygotes were detained in the ameloblasts and localized in the mineralization front of enamel matrix, while those in the WT mice were secreted out of ameloblasts and distributed evenly in the outer 1/2 of enamel matrix. Surprisingly, the 15 kDa C-terminal fragments of ameloblastin were not detected in the molar lysates of the homozygotes. These results suggest that the phosphorylation of SerSS may be an essential posttranslational modification of ENAM and is required for the interaction with other enamel matrix molecules such as ameloblastin in mediating the structural organization of enamel matrix and protein-mineral interactions during enamel formation.