This paper brings attention on the hybrid synchronization of the Chen hyper-chaotic system by using some simple controllers. We give the sufficient conditions for achieving the goal by using the Lyapunov stability the...This paper brings attention on the hybrid synchronization of the Chen hyper-chaotic system by using some simple controllers. We give the sufficient conditions for achieving the goal by using the Lyapunov stability theory, and we verify our conclusion by numerical simulations.展开更多
This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, ...This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.展开更多
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional...This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.展开更多
In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems ...In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems can be asymptotically controlled to the origin via impulsive control. Compared with some existing results, our results are more relaxed in the sense that the Lyapunov function is required to be nonincreasing only along a subsequence of switchings. Moreover, a larger upper bound of impulsive intervals for stabilization and synchronization is obtained.展开更多
The H∞ synchronization problem for a class of delayed chaotic systems with external disturbance is investigated. A novel delayed feedback controller is established under which the chaotic master and slave systems are...The H∞ synchronization problem for a class of delayed chaotic systems with external disturbance is investigated. A novel delayed feedback controller is established under which the chaotic master and slave systems are synchronized with a guaranteed H∞ performance. Based on the Lyapunov stability theory, a delay-dependent condition is derived and formulated in the form of linear matrix inequality (LMI). A numerical simulation is also presented to validate the effectiveness of the developed theoretical results.展开更多
Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperc...Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperchaotic Liu system. Through adjusting the frequency of the control signal, the chaotic property of the system can be controlled to show some different dynamic behaviors such as periodic, quasi-periodic, chaotic and hyperchaotic dynamic behaviours. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the two new systems are studied, respectively. Furthermore, the synchronizing circuits of the nonautonomous hyperchaotic Liu system are designed via the synchronization control method of single variable coupling feedback. Finally, the hardware circuits are implemented, and the corresponding waves of chaos are observed by an oscillograph.展开更多
In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impu...In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.展开更多
In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about samplin...In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequal- ities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.展开更多
This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a...This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a structural condition on the considered class of response systems is satisfied.The method presents some useful features:it enables exact GS to be achieved in finite time(i.e.,dead-beat synchronization);it is rigorous,systematic,and straightforward in checking GS;it can be applied to a wide class of chaotic maps.Some examples of GS,including the Grassi-Miller map and a recently introduced minimal 2-D quadratic map,are illustrated.展开更多
This paper investigates the impulsive control and synchronization of a chaotic system, which is a particular case of the so-called generalized Lorenz canonical form (GLCF) with r τ -1 Based on the impulsive control...This paper investigates the impulsive control and synchronization of a chaotic system, which is a particular case of the so-called generalized Lorenz canonical form (GLCF) with r τ -1 Based on the impulsive control method, some new criteria are obtained to guarantee the impulsively controlled chaotic system and error system to be globally asymptotically stable at origin. Moreover, to be some simulation results are included to visualize the effectiveness and feasibility of the proposed method.展开更多
We study different types of projective synchronization (projective-anticipating, projective, and projectivelag synchronization) in a class of time-delayed chaotic systems related to optical bistable or hybrid optica...We study different types of projective synchronization (projective-anticipating, projective, and projectivelag synchronization) in a class of time-delayed chaotic systems related to optical bistable or hybrid optical bistable devices. We relax some limitations of previous work, where the scaling factor a can not be any desired value. In this paper, we achieve projective-anticipating, projective, and projective-lag synchronization without the limitation of a. A suitable controller is chosen using active control approach. Based on the Lyapunov stability theory, we derive the sufficient stability condition through theoretical analysis. The analytical results are validated by the numerical simulations using Ikeda model and Mackey-Glass model.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
This paper presents the use of active disturbance rejection control method (ADRC) to synchronize two different chaotic systems. The master system and slave systems have uncertainties and external disturbances. The num...This paper presents the use of active disturbance rejection control method (ADRC) to synchronize two different chaotic systems. The master system and slave systems have uncertainties and external disturbances. The numerical results are presented for the synchronization between the Duffing-Holmes system and the van der pol system. The numerical results presented show the effectiveness of the proposed method.展开更多
A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple ...A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple and linear feedback controllers, as examples, are derived for the synchronization of Liu chaotic system and Duffing oscillator, respectively. This method is quite flexible in constructing a control law. Its effectiveness is also illustrated by the simulation results.展开更多
The impulsive synchronization problem of two identical chaotic ratchets is investigated in this paper. We demonstrate that the impulsive method to control directed transport is applicable when there are multiple co-ex...The impulsive synchronization problem of two identical chaotic ratchets is investigated in this paper. We demonstrate that the impulsive method to control directed transport is applicable when there are multiple co-existing attractors in phase space transporting particles in different directions. Numerical simulations are carried out to illustrate the effectiveness of the proposed method.展开更多
In this paper, a novel robust impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the theory of impulsive functional differential equations and a new ...In this paper, a novel robust impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the theory of impulsive functional differential equations and a new differential inequality, some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined region. Finally, some numerical simulations for the Lorenz system and Chen system are given to demonstrate the effectiveness and feasibility of the proposed method. Compared with the existing results based on so-called dual-stage impulsive control, the derived results reduce the complexity of impulsive controller, moreover, a larger stable region can be obtained under the same parameters, which can be shown in the numerical simulations finally.展开更多
The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhi...The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers.展开更多
In this paper, a very simple generalized synchronization method between different chaotic systems is presented. Only a scalar controller is used in this method. The method of obtaining the scalar controller from chaot...In this paper, a very simple generalized synchronization method between different chaotic systems is presented. Only a scalar controller is used in this method. The method of obtaining the scalar controller from chaotic systems is established. The sufficient and necessary condition of generalized synchronization is obtained from a rigorous theory, and the sufficient and necessary condition of generalized synchronization is irrelative to chaotic system itself. Theoretical analyses and simulation results show that the method established in this paper is effective.展开更多
We investigate the synchronization of a class of incommensurate fractional-order chaotic systems, and propose a modified adaptive controller for fractional-order chaos synchronization based on the Lyapunov stability t...We investigate the synchronization of a class of incommensurate fractional-order chaotic systems, and propose a modified adaptive controller for fractional-order chaos synchronization based on the Lyapunov stability theory, the fractional order differential inequality, and the adaptive strategy. This synchronization approach is simple, universal, and theoretically rigorous. It enables the synchronization of O fractional-order chaotic systems to be achieved in a systematic way. The simulation results for the fractional-order Qi chaotic system and the four-wing hyperchaotic system are provided to illustrate the effectiveness of the proposed scheme.展开更多
Chaos synchronization of systems with perturbations was investigated.A generic nonlinear control scheme to realize chaos synchronization of systems was proposed.This control scheme is flexible and practicable,and give...Chaos synchronization of systems with perturbations was investigated.A generic nonlinear control scheme to realize chaos synchronization of systems was proposed.This control scheme is flexible and practicable,and gives more freedom in designing controllers in order to achieve some desired performance.With the aid of Lyapunov stability theorem and partial stability theory,two cases were presented:1) Chaos synchronization of the system without perturbation or with vanishing perturbations;2) The boundness of the error state for the system with nonvanishing perturbations satisfying some conditions.Finally,several simulations for Lorenz system were provided to verify the effectiveness and feasibility of our method.Compared numerically with the existing results of linear feedback control scheme,the results are sharper than the existing ones.展开更多
文摘This paper brings attention on the hybrid synchronization of the Chen hyper-chaotic system by using some simple controllers. We give the sufficient conditions for achieving the goal by using the Lyapunov stability theory, and we verify our conclusion by numerical simulations.
基金supported by the Natural Science Foundation of China under Grant Nos.10747141 and 10735030Zhejiang Provincial Natural Science Foundation under Grant No.605408+3 种基金Ningbo Natural Science Foundation under Grant Nos.2007A610049 and 2008A61001National Basic Research Program of China (973 Program 2007CB814800)Programme for Changjiang Scholars and Innovative Research Team in University (IRT0734)K.C.Wong Magna Fund in Ningbo University
文摘This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 11MG49)
文摘This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10926066 and 11026182)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6100007)+3 种基金the Zhejiang Educational Committee,China(Grant No.Y200805720)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2010408)the Innovation Fund of Basic Scientific Research Operating Expenses,China(Grant No.3207010501)the Alexander von Humboldt Foundation of Germany
文摘In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems can be asymptotically controlled to the origin via impulsive control. Compared with some existing results, our results are more relaxed in the sense that the Lyapunov function is required to be nonincreasing only along a subsequence of switchings. Moreover, a larger upper bound of impulsive intervals for stabilization and synchronization is obtained.
基金supported by National Natural Science Foundation of China (No.60674092)
文摘The H∞ synchronization problem for a class of delayed chaotic systems with external disturbance is investigated. A novel delayed feedback controller is established under which the chaotic master and slave systems are synchronized with a guaranteed H∞ performance. Based on the Lyapunov stability theory, a delay-dependent condition is derived and formulated in the form of linear matrix inequality (LMI). A numerical simulation is also presented to validate the effectiveness of the developed theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant No 60572089)the Natural Science Foundation of Chongqing (Grant No CSTC,2008BB2087)
文摘Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperchaotic Liu system. Through adjusting the frequency of the control signal, the chaotic property of the system can be controlled to show some different dynamic behaviors such as periodic, quasi-periodic, chaotic and hyperchaotic dynamic behaviours. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the two new systems are studied, respectively. Furthermore, the synchronizing circuits of the nonautonomous hyperchaotic Liu system are designed via the synchronization control method of single variable coupling feedback. Finally, the hardware circuits are implemented, and the corresponding waves of chaos are observed by an oscillograph.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006 and 60521003)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)+2 种基金Liaoning Provincial Natural Science Foundation of China (Grant No 20062018)State Key Development Program for Basic research of China (Grant No 2009CB320601)111 Project,China (Grant No B08015)
文摘In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.
文摘In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequal- ities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
文摘This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a structural condition on the considered class of response systems is satisfied.The method presents some useful features:it enables exact GS to be achieved in finite time(i.e.,dead-beat synchronization);it is rigorous,systematic,and straightforward in checking GS;it can be applied to a wide class of chaotic maps.Some examples of GS,including the Grassi-Miller map and a recently introduced minimal 2-D quadratic map,are illustrated.
基金Supported by the National Natural Science Foundation of China (60574045)
文摘This paper investigates the impulsive control and synchronization of a chaotic system, which is a particular case of the so-called generalized Lorenz canonical form (GLCF) with r τ -1 Based on the impulsive control method, some new criteria are obtained to guarantee the impulsively controlled chaotic system and error system to be globally asymptotically stable at origin. Moreover, to be some simulation results are included to visualize the effectiveness and feasibility of the proposed method.
基金Supported by Research Project of Hubei Provincial Department of Education under Grant No.Q20101609Foundation of Wuhan Textile University under Grant No.105040
文摘We study different types of projective synchronization (projective-anticipating, projective, and projectivelag synchronization) in a class of time-delayed chaotic systems related to optical bistable or hybrid optical bistable devices. We relax some limitations of previous work, where the scaling factor a can not be any desired value. In this paper, we achieve projective-anticipating, projective, and projective-lag synchronization without the limitation of a. A suitable controller is chosen using active control approach. Based on the Lyapunov stability theory, we derive the sufficient stability condition through theoretical analysis. The analytical results are validated by the numerical simulations using Ikeda model and Mackey-Glass model.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
文摘This paper presents the use of active disturbance rejection control method (ADRC) to synchronize two different chaotic systems. The master system and slave systems have uncertainties and external disturbances. The numerical results are presented for the synchronization between the Duffing-Holmes system and the van der pol system. The numerical results presented show the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No 60274032) and the Science and Technology Rising-Star Program of Shanghai (Grant No 04QMH1405).
文摘A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple and linear feedback controllers, as examples, are derived for the synchronization of Liu chaotic system and Duffing oscillator, respectively. This method is quite flexible in constructing a control law. Its effectiveness is also illustrated by the simulation results.
基金supported by the National Natural Science Foundation of China (Grant No. 10901073)the Program for Innovative Research Team of Jiangnan University
文摘The impulsive synchronization problem of two identical chaotic ratchets is investigated in this paper. We demonstrate that the impulsive method to control directed transport is applicable when there are multiple co-existing attractors in phase space transporting particles in different directions. Numerical simulations are carried out to illustrate the effectiveness of the proposed method.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No.CDJZR10170002)
文摘In this paper, a novel robust impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the theory of impulsive functional differential equations and a new differential inequality, some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined region. Finally, some numerical simulations for the Lorenz system and Chen system are given to demonstrate the effectiveness and feasibility of the proposed method. Compared with the existing results based on so-called dual-stage impulsive control, the derived results reduce the complexity of impulsive controller, moreover, a larger stable region can be obtained under the same parameters, which can be shown in the numerical simulations finally.
文摘The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers.
文摘In this paper, a very simple generalized synchronization method between different chaotic systems is presented. Only a scalar controller is used in this method. The method of obtaining the scalar controller from chaotic systems is established. The sufficient and necessary condition of generalized synchronization is obtained from a rigorous theory, and the sufficient and necessary condition of generalized synchronization is irrelative to chaotic system itself. Theoretical analyses and simulation results show that the method established in this paper is effective.
基金Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. A2010000343).
文摘We investigate the synchronization of a class of incommensurate fractional-order chaotic systems, and propose a modified adaptive controller for fractional-order chaos synchronization based on the Lyapunov stability theory, the fractional order differential inequality, and the adaptive strategy. This synchronization approach is simple, universal, and theoretically rigorous. It enables the synchronization of O fractional-order chaotic systems to be achieved in a systematic way. The simulation results for the fractional-order Qi chaotic system and the four-wing hyperchaotic system are provided to illustrate the effectiveness of the proposed scheme.
基金Projects(61075065,60774045,U1134108) supported by the National Natural Science Foundation of ChinaProject(20110162110041) supported by the Ph.D Programs Foundation of Ministry of Education of ChinaProject(CX2011B086) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Chaos synchronization of systems with perturbations was investigated.A generic nonlinear control scheme to realize chaos synchronization of systems was proposed.This control scheme is flexible and practicable,and gives more freedom in designing controllers in order to achieve some desired performance.With the aid of Lyapunov stability theorem and partial stability theory,two cases were presented:1) Chaos synchronization of the system without perturbation or with vanishing perturbations;2) The boundness of the error state for the system with nonvanishing perturbations satisfying some conditions.Finally,several simulations for Lorenz system were provided to verify the effectiveness and feasibility of our method.Compared numerically with the existing results of linear feedback control scheme,the results are sharper than the existing ones.