In this paper, by using the biorthogonal quadrature filters, the biorthogonal mul-tiresolution analysis of finite dimension space equipped with inner product and the fast discrete wavelet transform (FDWT) are construc...In this paper, by using the biorthogonal quadrature filters, the biorthogonal mul-tiresolution analysis of finite dimension space equipped with inner product and the fast discrete wavelet transform (FDWT) are constructed. The dual transform method is proposed and the radar data storage is reduced by it. The method of choosing the wavelet coefficients, and the methods of correlation and nearest neighbor classification in wavelet domain based on the compressed data, are presented. The experimental results of the classification, using the high resolution range returns from six kinds of aircrafts, show that the methods of transform, compression and recognition are efficient.展开更多
采集5种共272份牛肝菌样品的傅里叶变换红外光谱和紫外光谱,结合多光谱信息融合策略,建立牛肝菌种类快速鉴别的方法。多元散射校正(multiplicative signal correction,MSC)及二阶导数(second derivative,2D)等预处理方法对原始光谱进行...采集5种共272份牛肝菌样品的傅里叶变换红外光谱和紫外光谱,结合多光谱信息融合策略,建立牛肝菌种类快速鉴别的方法。多元散射校正(multiplicative signal correction,MSC)及二阶导数(second derivative,2D)等预处理方法对原始光谱进行优化,比较优化处理对区分不同种类牛肝菌影响;利用优化处理后的光谱数据及融合数据建立偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA)模型和支持向量机(support vector machine,SVM)判别模型。结果显示:1)经过2D和MSC预处理后,不同种类牛肝菌的PLS-DA鉴别效果优于未优化模型,表明2D+MSC预处理优化了光谱信息并提高了分类准确度;2)基于傅里叶变换红外光谱、紫外光谱、低级融合和中级融合数据分别建立PLS-DA模型,预测正确率为86.87%、66.67%、78.89%和95.56%;建立SVM判别模型,预测正确率分别为88.89%、74.44%、91.11%和100.00%,表明中级融合技术对不同种类牛肝菌鉴别效果显著,优于其他技术;3)中级融合技术在PLS-DA模型和SVM判别模型中对样品的预测正确率分别为95.56%和100.00%,表明SVM判别模型对牛肝菌种类区分效果优于PLS-DA模型。采用中级融合技术建立SVM判别模型,快速鉴别牛肝菌种类,为牛肝菌种类鉴别和质量控制提供可靠、稳定的方法。展开更多
文摘In this paper, by using the biorthogonal quadrature filters, the biorthogonal mul-tiresolution analysis of finite dimension space equipped with inner product and the fast discrete wavelet transform (FDWT) are constructed. The dual transform method is proposed and the radar data storage is reduced by it. The method of choosing the wavelet coefficients, and the methods of correlation and nearest neighbor classification in wavelet domain based on the compressed data, are presented. The experimental results of the classification, using the high resolution range returns from six kinds of aircrafts, show that the methods of transform, compression and recognition are efficient.
文摘采集5种共272份牛肝菌样品的傅里叶变换红外光谱和紫外光谱,结合多光谱信息融合策略,建立牛肝菌种类快速鉴别的方法。多元散射校正(multiplicative signal correction,MSC)及二阶导数(second derivative,2D)等预处理方法对原始光谱进行优化,比较优化处理对区分不同种类牛肝菌影响;利用优化处理后的光谱数据及融合数据建立偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA)模型和支持向量机(support vector machine,SVM)判别模型。结果显示:1)经过2D和MSC预处理后,不同种类牛肝菌的PLS-DA鉴别效果优于未优化模型,表明2D+MSC预处理优化了光谱信息并提高了分类准确度;2)基于傅里叶变换红外光谱、紫外光谱、低级融合和中级融合数据分别建立PLS-DA模型,预测正确率为86.87%、66.67%、78.89%和95.56%;建立SVM判别模型,预测正确率分别为88.89%、74.44%、91.11%和100.00%,表明中级融合技术对不同种类牛肝菌鉴别效果显著,优于其他技术;3)中级融合技术在PLS-DA模型和SVM判别模型中对样品的预测正确率分别为95.56%和100.00%,表明SVM判别模型对牛肝菌种类区分效果优于PLS-DA模型。采用中级融合技术建立SVM判别模型,快速鉴别牛肝菌种类,为牛肝菌种类鉴别和质量控制提供可靠、稳定的方法。