Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagati...Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagation of the waves in plates.This work aims to explore the effects of changing compositional characteristics and the volume fraction of the constituent of plate materials regarding the wave propagation response of thick plates of FGM.This model is based on a higher-order theory and a new displacement field with four unknowns that introduce indeterminate integral variables with a hyperbolic arcsine function.The FGM plate is assumed to consist of a mixture of metal and ceramic,and its properties change depending on the power functions of the thickness of the plate,such as linear,quadratic,cubic,and inverse quadratic.By utilizing Hamilton’s principle,general formulae of the wave propagation were obtained to establish wave modes and phase velocity curves of the wave propagation in a functionally graded plate,including the effects of changing compositional characteristics of materials.展开更多
Let q_(λ)(z)=1+λsinh(ζ),0<λ<1/sinh(1)be a non-vanishing analytic function in the open unit disk.We introduce a subclass S^(*)(q_(λ))of starlike functions which contains the functions f such that zf'/f i...Let q_(λ)(z)=1+λsinh(ζ),0<λ<1/sinh(1)be a non-vanishing analytic function in the open unit disk.We introduce a subclass S^(*)(q_(λ))of starlike functions which contains the functions f such that zf'/f is subordinated by q_(λ).We establish inclusion and radii results for the class S^(*)(q_(λ))for several known classes of starlike functions.Furthermore,we obtain sharp coefficient bounds and sharp Hankel determinants of order two for the class S^(*)(q_(λ)).We also find a sharp bound for the third Hankel determinant for the caseλ=1/2.展开更多
Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference...Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geom...This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geometric Theory of Phyl-lotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci -Goniometry ( is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scien-tific ideas—The “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—The “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equat...In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equation of partitions of unity for the hyperbolic tangent function is given. Then, two kinds of quasi-interpolation type neural network operators are con- structed to approximate univariate and bivariate functions, respectively. Also, the errors of the approximation are estimated by means of the modulus of continuity of function. Moreover, for approximated functions with high order derivatives, the approximation errors of the constructed operators are estimated.展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New ...This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
According to the wave power rule,the second derivative of a functionχ(t)with respect to the variable t is equal to negative n times the functionχ(t)raised to the power of 2n?1.Solving the ordinary differential equat...According to the wave power rule,the second derivative of a functionχ(t)with respect to the variable t is equal to negative n times the functionχ(t)raised to the power of 2n?1.Solving the ordinary differential equations numerically results in waves appearing in the figures.The ordinary differential equation is very simple;however,waves,including the regular amplitude and period,are drawn in the figure.In this study,the function for obtaining the wave is called the leaf function.Based on the leaf function,the exact solutions for the undamped and unforced Duffing equations are presented.In the ordinary differential equation,in the positive region of the variableχ(t),the second derivative d^2χ(t)/dt^2 becomes negative.Therefore,in the case that the curves vary with the time under the conditionχ(t)>0,the gradient dχ(t)/d constantly decreases as time increases.That is,the tangential vector on the curve of the graph(with the abscissa and the ordinate χ(t)changes from the upper right direction to the lower right direction as time increases.On the other hand,in the negative region of the variableχ(t),the second derivative d^2χ(t)/dt^2 becomes positive.The gradient d χ(t)/d constantly increases as time decreases.That is,the tangent vector on the curve changes from the lower right direction to the upper right direction as time increases.Since the behavior occurring in the positive region of the variable χ(t)and the behavior occurring in the negative region of the variableχ(t)alternately occur in regular intervals,waves appear by these interactions.In this paper,I present seven types of damped and divergence exact solutions by combining trigonometric functions,hyperbolic functions,hyperbolic leaf functions,leaf functions,and exponential functions.In each type,I show the derivation method and numerical examples,as well as describe the features of the waveform.展开更多
This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates wi...This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。展开更多
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discove-ries—New...This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discove-ries—New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry ( λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas—the “golden mean”, which had been introduced by Euclid in his Elements, and its generalization—the “metallic means”, which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.展开更多
We study the Green's function for a general hyperbolic-parabolic system, including the Navier-Stokes equations for compressible fluids and the equations for magnetohydrodynamics. More generally, we consider general s...We study the Green's function for a general hyperbolic-parabolic system, including the Navier-Stokes equations for compressible fluids and the equations for magnetohydrodynamics. More generally, we consider general systems under the basic Kawashima- Shizuta type of conditions. The first result is to make precise the secondary waves with subscale structure, revealing the nature of coupling of waves pertaining to different characteristic families. The second result is on the continuous differentiability of the Green's function with respect to a small parameter when the coefficients of the system are smooth functions of that parameter. The results significantly improve previous results obtained by the authors.展开更多
By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soli...By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution, and alternating phase bright and dark soliton solution, if a special relation is bound on the coefficients of the equation.展开更多
In this paper, we investigate the effect of weight function in the nonlinear part on global solvability of the Cauchy problem for a class of semi-linear hyperbolic equations with damping.
A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The gene...A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictions are compared with those of Runge-Kutta method to illustrate its accuracy.展开更多
文摘Several studies on functionally graded materials(FGMs)have been done by researchers,but few studies have dealt with the impact of the modification of the properties of materials with regard to the functional propagation of the waves in plates.This work aims to explore the effects of changing compositional characteristics and the volume fraction of the constituent of plate materials regarding the wave propagation response of thick plates of FGM.This model is based on a higher-order theory and a new displacement field with four unknowns that introduce indeterminate integral variables with a hyperbolic arcsine function.The FGM plate is assumed to consist of a mixture of metal and ceramic,and its properties change depending on the power functions of the thickness of the plate,such as linear,quadratic,cubic,and inverse quadratic.By utilizing Hamilton’s principle,general formulae of the wave propagation were obtained to establish wave modes and phase velocity curves of the wave propagation in a functionally graded plate,including the effects of changing compositional characteristics of materials.
基金supported by the Grant No.20-16367/NRPU/RD/HEC/20212021。
文摘Let q_(λ)(z)=1+λsinh(ζ),0<λ<1/sinh(1)be a non-vanishing analytic function in the open unit disk.We introduce a subclass S^(*)(q_(λ))of starlike functions which contains the functions f such that zf'/f is subordinated by q_(λ).We establish inclusion and radii results for the class S^(*)(q_(λ))for several known classes of starlike functions.Furthermore,we obtain sharp coefficient bounds and sharp Hankel determinants of order two for the class S^(*)(q_(λ)).We also find a sharp bound for the third Hankel determinant for the caseλ=1/2.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the Natural Science Foundation (Grant No 200408020103), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia, China and the Youth Foundation (Grant No QN004024) of Inner Mongolia Normal University, China.
文摘Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov [1], a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries—New Geometric Theory of Phyl-lotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci -Goniometry ( is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scien-tific ideas—The “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—The “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
基金Supported by the National Natural Science Foundation of China(61179041,61272023,and 11401388)
文摘In this paper, we discuss some analytic properties of hyperbolic tangent function and estimate some approximation errors of neural network operators with the hyperbolic tan- gent activation function. Firstly, an equation of partitions of unity for the hyperbolic tangent function is given. Then, two kinds of quasi-interpolation type neural network operators are con- structed to approximate univariate and bivariate functions, respectively. Also, the errors of the approximation are estimated by means of the modulus of continuity of function. Moreover, for approximated functions with high order derivatives, the approximation errors of the constructed operators are estimated.
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discoveries–New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry (λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas-the “golden mean,” which had been introduced by Euclid in his Elements, and its generalization—the “metallic means,” which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
文摘According to the wave power rule,the second derivative of a functionχ(t)with respect to the variable t is equal to negative n times the functionχ(t)raised to the power of 2n?1.Solving the ordinary differential equations numerically results in waves appearing in the figures.The ordinary differential equation is very simple;however,waves,including the regular amplitude and period,are drawn in the figure.In this study,the function for obtaining the wave is called the leaf function.Based on the leaf function,the exact solutions for the undamped and unforced Duffing equations are presented.In the ordinary differential equation,in the positive region of the variableχ(t),the second derivative d^2χ(t)/dt^2 becomes negative.Therefore,in the case that the curves vary with the time under the conditionχ(t)>0,the gradient dχ(t)/d constantly decreases as time increases.That is,the tangential vector on the curve of the graph(with the abscissa and the ordinate χ(t)changes from the upper right direction to the lower right direction as time increases.On the other hand,in the negative region of the variableχ(t),the second derivative d^2χ(t)/dt^2 becomes positive.The gradient d χ(t)/d constantly increases as time decreases.That is,the tangent vector on the curve changes from the lower right direction to the upper right direction as time increases.Since the behavior occurring in the positive region of the variable χ(t)and the behavior occurring in the negative region of the variableχ(t)alternately occur in regular intervals,waves appear by these interactions.In this paper,I present seven types of damped and divergence exact solutions by combining trigonometric functions,hyperbolic functions,hyperbolic leaf functions,leaf functions,and exponential functions.In each type,I show the derivation method and numerical examples,as well as describe the features of the waveform.
文摘This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。
文摘This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary direction of modern science. The main goal of the article is to describe two modern scientific discove-ries—New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ-Goniometry ( λ > 0 is a given positive real number). Although these discoveries refer to different areas of science (mathematics and theoretical botany), however they are based on one and the same scientific ideas—the “golden mean”, which had been introduced by Euclid in his Elements, and its generalization—the “metallic means”, which have been studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdisciplinary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements.
基金The research of the first author was partially supported by NSC Grant 96-2628-M-001-011 and NSF Grant DMS-0709248The research of the second author was partially supported byNSF Grant DMS-0207154
文摘We study the Green's function for a general hyperbolic-parabolic system, including the Navier-Stokes equations for compressible fluids and the equations for magnetohydrodynamics. More generally, we consider general systems under the basic Kawashima- Shizuta type of conditions. The first result is to make precise the secondary waves with subscale structure, revealing the nature of coupling of waves pertaining to different characteristic families. The second result is on the continuous differentiability of the Green's function with respect to a small parameter when the coefficients of the system are smooth functions of that parameter. The results significantly improve previous results obtained by the authors.
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Scienoe Foundation of Liaocheng University
文摘By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution, and alternating phase bright and dark soliton solution, if a special relation is bound on the coefficients of the equation.
文摘In this paper, we investigate the effect of weight function in the nonlinear part on global solvability of the Cauchy problem for a class of semi-linear hyperbolic equations with damping.
基金supported by the National Natural Science Foundation of China (10672193)Sun Yat-sen University (Fu Lan Scholarship)the University of Hong Kong (CRGC grant).
文摘A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictions are compared with those of Runge-Kutta method to illustrate its accuracy.