A new nonlinear wave equation of a finite deformation elastic circular rod simultaneously introducing transverse inertia and shearing strain was derived by means of Hamilton principle. The nonlinear equation includes ...A new nonlinear wave equation of a finite deformation elastic circular rod simultaneously introducing transverse inertia and shearing strain was derived by means of Hamilton principle. The nonlinear equation includes two nonlinear terms caused by finite deformation and double geometric dispersion effects caused by transverse inertia and transverse shearing strain. Nonlinear wave equation and corresponding truncated nonlinear wave equation were solved by the hyperbolic secant function finite expansion method. The solitary wave solutions of these nonlinear equations were obtained. The necessary condition of these solutions existence was given also.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10472076)the Natural Science Foundation of Shanxi Province of China (No.2006021005)
文摘A new nonlinear wave equation of a finite deformation elastic circular rod simultaneously introducing transverse inertia and shearing strain was derived by means of Hamilton principle. The nonlinear equation includes two nonlinear terms caused by finite deformation and double geometric dispersion effects caused by transverse inertia and transverse shearing strain. Nonlinear wave equation and corresponding truncated nonlinear wave equation were solved by the hyperbolic secant function finite expansion method. The solitary wave solutions of these nonlinear equations were obtained. The necessary condition of these solutions existence was given also.