In this paper we obtain the existence of the generalized solutions to the Cauchy problem for a model of combustion provided that the function f is of nonconvexity and initial values lie in the bounded, measurable class.
It is important to study the propagation and interaction of progressing waves of nonlinear equations in the class of piecewise smooth function. However, there has not been many works on that in multidimensional case. ...It is important to study the propagation and interaction of progressing waves of nonlinear equations in the class of piecewise smooth function. However, there has not been many works on that in multidimensional case. In 1985, J, Rauch & M. Reed have provad the existence and uniqueness of piecewise smooth solution for展开更多
In this paper we consider the initial-boundary value problem for a second order hyperbolic equation with initial jump. The bounds on the derivatives of the exact solution are given. Then a difference scheme is constru...In this paper we consider the initial-boundary value problem for a second order hyperbolic equation with initial jump. The bounds on the derivatives of the exact solution are given. Then a difference scheme is constructed on a non-uniform grid. Finally, uniform convergence of the difference solution is proved in the sense of the discrete energy norm.展开更多
In this paper, we construct a local supersonic flow in a 3-dimensional axis-symmetry nozzle when a uniform supersonic flow inserts the throat. We apply the local existence theory of boundary value problem for quasilin...In this paper, we construct a local supersonic flow in a 3-dimensional axis-symmetry nozzle when a uniform supersonic flow inserts the throat. We apply the local existence theory of boundary value problem for quasilinear hyperbolic system to solve this problem. The boundary value condition is set in particular to guarantee the character number condition. By this trick, the theory in quasilinear hyperbolic system can be employed to a large range of the boundary value problem.展开更多
The present work extends the search of Jacobi elliptic function solutions for the multi-component modified Korteweg-de Vries equations. When the modulum m →1, those periodic solutions degenerate as the corresponding ...The present work extends the search of Jacobi elliptic function solutions for the multi-component modified Korteweg-de Vries equations. When the modulum m →1, those periodic solutions degenerate as the corresponding solitary wave and shock wave ones. Especially, exact solutions for the three-component system are presented in detail and graphically.展开更多
In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with thr...In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with threearbitrary functions are obtained including hyperbolic function solutions,trigonometric function solutions,and rationalsolutions.This method can be applied to other higher-dimensional nonlinear partial differential equations.展开更多
In this paper, the Toda equation and the discrete nonlinear Schrdinger equation with a saturable nonlinearity via the discrete " (G′/G")-expansion method are researched. As a result, with the aid of the symbolic ...In this paper, the Toda equation and the discrete nonlinear Schrdinger equation with a saturable nonlinearity via the discrete " (G′/G")-expansion method are researched. As a result, with the aid of the symbolic computation, new hyperbolic function solution and trigonometric function solution with parameters of the Toda equation are obtained. At the same time, new envelop hyperbolic function solution and envelop trigonometric function solution with parameters of the discrete nonlinear Schro¨dinger equation with a saturable nonlinearity are obtained. This method can be applied to other nonlinear differential-difference equations in mathematical physics.展开更多
文摘In this paper we obtain the existence of the generalized solutions to the Cauchy problem for a model of combustion provided that the function f is of nonconvexity and initial values lie in the bounded, measurable class.
基金This paper is supported by the National Foundations.
文摘It is important to study the propagation and interaction of progressing waves of nonlinear equations in the class of piecewise smooth function. However, there has not been many works on that in multidimensional case. In 1985, J, Rauch & M. Reed have provad the existence and uniqueness of piecewise smooth solution for
文摘In this paper we consider the initial-boundary value problem for a second order hyperbolic equation with initial jump. The bounds on the derivatives of the exact solution are given. Then a difference scheme is constructed on a non-uniform grid. Finally, uniform convergence of the difference solution is proved in the sense of the discrete energy norm.
文摘In this paper, we construct a local supersonic flow in a 3-dimensional axis-symmetry nozzle when a uniform supersonic flow inserts the throat. We apply the local existence theory of boundary value problem for quasilinear hyperbolic system to solve this problem. The boundary value condition is set in particular to guarantee the character number condition. By this trick, the theory in quasilinear hyperbolic system can be employed to a large range of the boundary value problem.
基金supported by National Natural Science Foundation of China under Grant Nos. 60772023 and 60372095the Key Project of the Ministry of Education under Grant No. 106033+3 种基金the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001Beijing University of Aeronautics and Astronautics,the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20060006024the Ministry of Education
文摘The present work extends the search of Jacobi elliptic function solutions for the multi-component modified Korteweg-de Vries equations. When the modulum m →1, those periodic solutions degenerate as the corresponding solitary wave and shock wave ones. Especially, exact solutions for the three-component system are presented in detail and graphically.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101Key Disciplines of Shanghai Municipality under Grant No.S30104
文摘In this paper,we construct exact solutions for the (2+1)-dimensional Boiti-Leon-Pempinelle equation byusing the (G'/G)-expansion method,and with the help of Maple.As a result,non-travelling wave solutions with threearbitrary functions are obtained including hyperbolic function solutions,trigonometric function solutions,and rationalsolutions.This method can be applied to other higher-dimensional nonlinear partial differential equations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61072147,11071159)the Natural Science Foundation of Shanghai Municipality (Grant No.09ZR1410800)+1 种基金the Science Foundation of Key Laboratory of Mathematics Mechanization (Grant No.KLMM0806)the Shanghai Leading Academic Discipline Project (Grant Nos.J50101, S30104)
文摘In this paper, the Toda equation and the discrete nonlinear Schrdinger equation with a saturable nonlinearity via the discrete " (G′/G")-expansion method are researched. As a result, with the aid of the symbolic computation, new hyperbolic function solution and trigonometric function solution with parameters of the Toda equation are obtained. At the same time, new envelop hyperbolic function solution and envelop trigonometric function solution with parameters of the discrete nonlinear Schro¨dinger equation with a saturable nonlinearity are obtained. This method can be applied to other nonlinear differential-difference equations in mathematical physics.