The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me...The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.展开更多
An epoxy-terminated hyperbranched aromatic polyester (P3) was synthesized from a hyperbranched aromatic polyester containing carboxylic acid end groups (P1), which was derived from the condensation polymerization of t...An epoxy-terminated hyperbranched aromatic polyester (P3) was synthesized from a hyperbranched aromatic polyester containing carboxylic acid end groups (P1), which was derived from the condensation polymerization of the AB(2) monomer, 5-acetoxyisophthalic acid. Polymer P1 was converted into the polymeric acid chloride by reaction with thionyl chloride. The acid chloride was reacted with ethanol and glycidol to form a poly(ethyl ester) (P2) and an epoxy terminated material (P3), respectively. The reaction conditions in each step of these processes had to be controlled very carefully to avoid unwanted cross-linking reactions. The characterization of products and intermediates, including molecular weight distributions and thermal properties, are reported.展开更多
A novel AB3-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were character...A novel AB3-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were characterized via FTIR and NMR spectroscopy and thermal analysis, and the average degree of branching of the polymers was estimated to be 0.75. The polymers with abundant acetyl end groups were found to be amorphous with lower intrinsic viscosity, better thermal stability and excellent solubility.展开更多
Polycyclotrimerization and polycoupling of acetylenic monomers respectively furnish hyperbranched polyarylenes and polyynes with high molecular weights (up to 1 × 10^6) in high yields (up to 99.9%). The polym...Polycyclotrimerization and polycoupling of acetylenic monomers respectively furnish hyperbranched polyarylenes and polyynes with high molecular weights (up to 1 × 10^6) in high yields (up to 99.9%). The polymers possess low intrinsic viscosities and high thermal stabilities, losing little of their weights when heated to 〉 400℃. Upon pyrolysis at 〉 800℃, the polymers graphitize with high char yields (up to 86%). Hyperbranched polyarylenes efficiently emit deep-blue to blue-green lights with fluorescence quantum yields up to 98% and strongly attenuate intense laser pulses with optical power-limiting performances superior to that of C60, a well-known optical limiter. Poly(alkenephenylenes), poly(aroylarylenes) and polyynes are readily cross-linkable by UV irradiation, serving as excellent photoresist materials for the generation of patterns with nanometer resolution. Thin films of hyperbranched polyynes exhibit very high refractive indexes (n up to 1.86). The internal and terminal acetylene moieties of the polyynes readily form complexes with cobalt carbonyls, which can be transformed into soft ferromagnetic ceramics with high magnetic susceptibilities (Ms up to ca. 118 emu/g) and near-zero magnetic losses.展开更多
The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calori...The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calorimetry (DSC) at various heating rates. The results were compared with the corresponding results by using 1,3-dihydroxybenzene(DHB) as a model compound. The results show that HHPP can enhance the cure reaction of DGEBA, resulting in the decrease of the peak temperature of the curing curve as well as the decrease of the activation energy because of the flexible --P--O-- groups in the backbone of HHPP. However, both the activation energy of the cured polymer and the peak temperature of the curing curve are increased with DHB as a curing agent. The cure kinetics of the DGEBA/HHPP system was calculated by using the isoconversional method given by Malek. It was found that the two-parameter autocatalytic model(Sestak-Berggren equation) is the most adequate one to describe the cure kinetics of the studied System at various heating rates. The obtained non-isothermal DSC curves from the experimental data show the results being accordant with those theoretically calculated.展开更多
UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl...UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl acrylate (HEA), polyethyleneglycol (PEG-200)and nano-SiO2. The UV curing kinetics of the films was investigated by FTIR. The results show that the curing speed of the films increases with the adding of nano-SiO2 and decreases with the adding of PUDA due to the slower chain movement. The thermal stability of the HBPUA-PUDA/SiO2 films was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR). The results show that all films exhibit two degradation stages located at about 320 and 440℃ corresponding to the degradation for hard segments of urethane-acrylate and the degradation for soft segment and polyester core. In addition, the results from the analysis of TGA/FTIR also indicate that the decomposition temperature of HBPUA-PUDA/SiO2 film is 15℃ higher than that obtained for pure polymer. The degradation mechanism was proposed according to TGA/FTIR results.展开更多
The monomer 2,6,12-triaminotriptycene was synthesized and the structure was confirmed by IR and 1H NMR spectra. Hyperbranched polyimides modified with different terminal groups were obtained from precursors, anhydride...The monomer 2,6,12-triaminotriptycene was synthesized and the structure was confirmed by IR and 1H NMR spectra. Hyperbranched polyimides modified with different terminal groups were obtained from precursors, anhydride- and aminoterminated hyperbranched poly(amic acid)s from polymerization of A2 + B3 system. From gel permeation chromatograrn (GPC) characterization, representative products had high molecular weight. All polymers had good solubility in CHCl3, DMF and tetrahydrofuran (THF), and performed no detective Tgs in the range of 50-300 ℃ and high Tds above 455 ℃ when 5% weight loss.展开更多
Hyperbranched poly(amine-ester)s bearing self-complementary quadruple hydrogen bonding units display excellent mechanical and temperature-dependent melt rheological properties, which make them suitable as novel hot-...Hyperbranched poly(amine-ester)s bearing self-complementary quadruple hydrogen bonding units display excellent mechanical and temperature-dependent melt rheological properties, which make them suitable as novel hot-melting materials.展开更多
A series of hyperbranched poly(amine-ester)polyols were synthesized by the polycondensation of N,N-diethylol-3-amine-methylpropionate(prepared by Michael addition reaction of methyl acrylate with diethanolamine)as an ...A series of hyperbranched poly(amine-ester)polyols were synthesized by the polycondensation of N,N-diethylol-3-amine-methylpropionate(prepared by Michael addition reaction of methyl acrylate with diethanolamine)as an AB2-type monomer with trimethylol propane as the core moiety,proceeding in one-step procedure in the melt with p-toluenesulfonic acid as catalyst.The obtained monomer and polymers were characterized by FTIR and 1H-NMR spectroscopy.The solubility and surface activity in aqueous solution of the polymers were also examined.The gas permeability,water vapor permeability,and moisture absorption of microfiber synthetic leather treated by hyperbranched polymer were studied.The optimum conditions were that the dosage of dye and hyperbranched polymer was 5% and 10%,respectively.The water vapor permeability and moisture absorption of microfiber synthetic leather reached to 0.525 4 mg/(10 cm2·24 h)and 0.046 7 mg/(10 cm2·24 h).Compared with blank samples,they increased by 15% and 35%,respectively.However,the dosage of hyperbranched polymer has little influence on gas permeability of microfiber synthetic leather.SEM results show that the fiber of microfiber synthetic leather treated by hyperbranched polymer is incompact.展开更多
Hydrogen production from formic acid decomposition(FAD)is a promising means of hydrogen energy storage and utilization in fuel cells.Development of efficient catalysts for dehydrogenation of formic acid is a challengi...Hydrogen production from formic acid decomposition(FAD)is a promising means of hydrogen energy storage and utilization in fuel cells.Development of efficient catalysts for dehydrogenation of formic acid is a challenging topic.The surface chemical and electronic structure of the active catalysis components is important in formic acid decomposition at room-temperature.Here,the pyrdinic-nitrogen doped catalysts from hyperbranched polyamide were prepared via in situ polymerization reaction process by using activated carbon as a support.Because of the introduction of the polymer,the particles of the catalysts were stabilized,and the average particle diameter was only 1.64 nm.Under mild conditions,the catalysts activities were evaluated for FAD.The optimized Pd-N30/C catalyst exhibited high performance achieving almost full conversion,with a turnover frequency of 3481 h^-1 at 30℃.展开更多
New acetylene monomers, 6-{[(1-naphthylethynyl-4-phenyl)carbonyl]oxy}-1-phenyl-1-hexyne (1), 2,5-diethynyl-thiophene (3), and 4,4'-diethynylbiphenyl (6) were synthesized. Homopolymerization of 1 and copolycyclotri...New acetylene monomers, 6-{[(1-naphthylethynyl-4-phenyl)carbonyl]oxy}-1-phenyl-1-hexyne (1), 2,5-diethynyl-thiophene (3), and 4,4'-diethynylbiphenyl (6) were synthesized. Homopolymerization of 1 and copolycyclotrimerizations of 3 and 6 with 1-heptyne and 1-octyne have been achieved with WCl6- and TaCl5-Ph4Sn catalysts, respectively, giving soluble linear disubstituted polyacetylene (2) and hyperbranched polyarylenes (5 and 8) with high molecular weights (up to 1.2 x 10(5)) in high yields (up to 98%). The structures and properties of the polymers are characterized and evaluated by R NMR, TGA, UV, photoluminescence (PL), and electroluminescence (EL) analyses. All the polymers possess high thermal stability and emit strong blue light upon photoexcitation. The intensity of the emitted light is greater than that of poly(1-phenyl-1-octyne), a well-known highly luminescent disubstituted polyacetylene. Little aggregation-induced red shift in the PL was observed in the thin films of the polymers. By constructing a multi-layer EL device, high EL quantum yield (0.18%) has been achieved in 2, which are the best results for substituted polyacetylenes attainable so far.展开更多
UV-curable hyperbranched polyurethane (UV-HBPU) containing carboxyl groups was synthesized from isophorone diisocyanate (IPDI), diethanolamine (DEOA), polyethylene glycol (PEG-400), hydroxyethyl acrylate (HEA...UV-curable hyperbranched polyurethane (UV-HBPU) containing carboxyl groups was synthesized from isophorone diisocyanate (IPDI), diethanolamine (DEOA), polyethylene glycol (PEG-400), hydroxyethyl acrylate (HEA), and 2,2-his (hydroxymethyl) propionic acid (DMPA). The UV-HBPU was used as a negative-type photoresist for a printed circuit board (PCB). Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopy of UV-HBPUs indicated that the synthesis was successful. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the thermal stability of the UV-HBPUs decreased as the HEA content increased. The polymer exhibited excellent photoresist properties, and the resolution of circuits based on this negative-type photoresist reached 10 μm.展开更多
A series of new hyperbranched poly(aryleneethynylene)s are synthesized by the copolycyclotrimerizations oftetraynes(Ⅰand Ⅱ)with aliphatic monoynes(A-C)catalyzed by tantalum-,niobium-,and cobalt-based catalysts.All t...A series of new hyperbranched poly(aryleneethynylene)s are synthesized by the copolycyclotrimerizations oftetraynes(Ⅰand Ⅱ)with aliphatic monoynes(A-C)catalyzed by tantalum-,niobium-,and cobalt-based catalysts.All thereactions proceed smoothly and soluble polymers of high molecular weights(M_w up to 3.8×10~4)are obtained in high yields(up to 97%).展开更多
A series of water soluble aliphatic hyperbranched poly(amido amine)s(PAMAMs) with the same or similar chemical structure of poly(amido amine) dendrimer was successfully synthesized from commercially available AB and C...A series of water soluble aliphatic hyperbranched poly(amido amine)s(PAMAMs) with the same or similar chemical structure of poly(amido amine) dendrimer was successfully synthesized from commercially available AB and C_n types of monomers by one-pot polymerization via the couple-monomer methodology(CMM). The AB type monomer used in this paper was methyl acrylate, and C_n monomers were multi-amino compounds such as ethylenediamine(EDA), diethylenetriamine(DETA), triethylenetetraamine(TETA), tetraethylenepentaamine(TEPA) and pentaethylenehexamine(PEHA). The reaction mechanism was investigated by means of the mass spectra of the reaction intermediates. Adjusting the feed ratio of AB to C_n, hyperbranched polymers with different terminal groups and properties were obtained. FTIR, NMR, DSC, and TGA were used to characterize the polymers. It was found that the polymers′ properties such as solubility, thermal behaviour and encapsulation capability varied with changing the feed ratio of AB to C_n. Benzoyl and palmitoyl groups were introduced into these macromolecules by acidylation to form amphiphilic hyperbranched polymers which have a high capability to encapsulate water soluble dyes such as Congo red. It is expected that the hyperbranched PAMAMs can play an important role in the industrial applications, such as coatings, cross-linking and phase-transferring agents because of their versatility and availability.展开更多
AB2-type-prepolymerized monomer was rapidly (2 h) prepared at room temperature (25 ℃) using commercially available maleic anhydride (MA) and diethanolamine (DEA) as raw materials. By employing toluene-p-sulfo...AB2-type-prepolymerized monomer was rapidly (2 h) prepared at room temperature (25 ℃) using commercially available maleic anhydride (MA) and diethanolamine (DEA) as raw materials. By employing toluene-p-sulfonic acid as a catalyzer, a series of hyperbranched poly(amide-ester) (HBPAE) were successfully synthesized from prepared AB2 monomer by solution condensation polymerization through "one-step process" or "pseudo one-step process" (using pentaerythritol as a center core). The processes were carried out at high temperature of 120 ℃ for 6 h in air atmosphere (inert protection free) with reduced pressure distillation (0.08--0.096 MPa). The results of FT-IR, UV-Vis, TGA, and intrinsic viscosity testing by Ubbelodhe viscometer showed that the prepared HBPAEs possess three-dimensional configuration with unsaturated conjugate structure, large numbers of branches and numerous terminal hydroxyl groups. These result in their low viscosity, high solubility and thermal stability.展开更多
Nano-SiO2 was modified using silane coupling agent (KH-550) and hyperbranched poly(amine-ester) respectively, and Poly(vinyl chloride) (PVC)/modified nano-SiO2 composites were made by melt-blending. The compos...Nano-SiO2 was modified using silane coupling agent (KH-550) and hyperbranched poly(amine-ester) respectively, and Poly(vinyl chloride) (PVC)/modified nano-SiO2 composites were made by melt-blending. The composites' structures andmechanical properties were characterized by transmission electron microscopy(TEM), sanning electronic microscopy(SEM) and electronic universal testing machine. The results. show that nano-SiO2 grafted by hyperbranched poly (amine-ester) increases obviously in dispersion in PVC matrix, and mechanical properties of PVC are effectively improved. Moreover, it was found that mechanical properties of PVC/nano-SiO2 composites reach the best when weight percent of nano-SiO2 in PVC matrix is 1%. Compared with crude PVC, the tensile strength of hyperbranched poly (amine-ester) grafted nano-SiO2/ PVC composite increases by 24.68 % and its break elongation, flexural strength and impact strength increase by 15.73%, 4.07% and 1 841.84%, respectively. Moreover, the processing of the composites is improved.展开更多
Binders are of vital importance in stabilizing the cathodes to enhance the cycling stability of lithiumsulfur(Li-S) batteries. However, conventional binders are typically confronted with the drawback of inability for ...Binders are of vital importance in stabilizing the cathodes to enhance the cycling stability of lithiumsulfur(Li-S) batteries. However, conventional binders are typically confronted with the drawback of inability for adsorbing lithium polysulfide(Li PS), thus resulting in severe active material losing and rapid capacity fading. Herein, a novel water-soluble hyperbranched poly(amidoamine)(HPAA) binder with controllable hyperbranched molecular structure and abundant amino end groups for Li-S battery is designed and fabricated, which can improve efficient adsorption for Li PS and stability of the sulfur cathodes. Besides, the strong intermolecular hydrogen bonds in HPAA binder can contribute to the structural stability of S cathode and integration of the conductive paths. Therefore, the Li-S battery with this functional binder exhibits excellent cycle performance with a capacity retention of 91% after 200 cycles at 0.1 C.Even at a high sulfur loading of 5.3 mg cm-2, a specific capacity of 601 mA h g-1 can also be achieved.Density functional theory(DFT) calculation further demonstrates that the enhanced electrochemical stability derives from the high binding energy between amino groups and LiP S and the wide electrochemical window(6.87 e V) of HPAA molecule. Based on the above all, this functional polymer will lighten a new species of binders for eco-friendly sulfur cathodes and significantly promote the practical applications of high-performance Li-S batteries.展开更多
A Aeries of hydroxylic hyperbranched polymers were derived from 2,2-bis(methylol) propionic acid and tris(methylol) propane reacted with acrylic acid to various extents. The obtained acrylated hyperbranched polymers a...A Aeries of hydroxylic hyperbranched polymers were derived from 2,2-bis(methylol) propionic acid and tris(methylol) propane reacted with acrylic acid to various extents. The obtained acrylated hyperbranched polymers alone or with a monofunctional diluent, isobornylene acrylate(IBOA) were further cured by UV radiation. The cured films based on the modified polymers alone all demonstrated poor mechanical properties due to their high network densities and low moving ability of polymer chains. For the composite systems, the cured films demonstrated improved mechanical properties due to the low network densities and high chain moving ability. With more IBOA included in the systems, acrylate groups can react to a higher extent during the curing process.展开更多
The synthesis and characterization of hyperbranched polyester (HBP) with different molecular weight are studied. The effect of HBP on the modification of epoxy resins cured with anhydride is mainly discussed. The ch...The synthesis and characterization of hyperbranched polyester (HBP) with different molecular weight are studied. The effect of HBP on the modification of epoxy resins cured with anhydride is mainly discussed. The characteristics of HBP and the morphologies of cured system are determined by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and scanning electron microscope (SEM). The impact strength of cured system is detected and Fourier transform infrared (FTIR) measurements were used to pursue the curing process. The investigation shows that HBP can improve the toughness by forming copolymer networks between epoxy resins, HBP and anhydride. Moreover, when the molecular weight of HBP is 1342g/mol the toughening effect is the best, and the changes of toughness are small with the increase of molecular weight of HBP to 3500 g/mol.展开更多
A facile and selective route for O-alkylation of highly hydrophilic, multifunctional hyperbranched polyglycerol (PG) under non-aqueous phase transfer catalyzed conditions in dimethyl sulfoxide was developed, through w...A facile and selective route for O-alkylation of highly hydrophilic, multifunctional hyperbranched polyglycerol (PG) under non-aqueous phase transfer catalyzed conditions in dimethyl sulfoxide was developed, through which several kinds of groups were introduced onto PG.展开更多
基金financially supported by the National Natural Science Foundation of China (22178008, 22125801)Petrochina (2022DJ6004)。
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.
基金The project is supported by the EPSRC and the Youth Science Foundation of Shanghai Higher Education.
文摘An epoxy-terminated hyperbranched aromatic polyester (P3) was synthesized from a hyperbranched aromatic polyester containing carboxylic acid end groups (P1), which was derived from the condensation polymerization of the AB(2) monomer, 5-acetoxyisophthalic acid. Polymer P1 was converted into the polymeric acid chloride by reaction with thionyl chloride. The acid chloride was reacted with ethanol and glycidol to form a poly(ethyl ester) (P2) and an epoxy terminated material (P3), respectively. The reaction conditions in each step of these processes had to be controlled very carefully to avoid unwanted cross-linking reactions. The characterization of products and intermediates, including molecular weight distributions and thermal properties, are reported.
文摘A novel AB3-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were characterized via FTIR and NMR spectroscopy and thermal analysis, and the average degree of branching of the polymers was estimated to be 0.75. The polymers with abundant acetyl end groups were found to be amorphous with lower intrinsic viscosity, better thermal stability and excellent solubility.
基金This work was partially supported by the Hong Kong Research Grants Council,the University Grants Committee of Hong Kong,and the National Natural Science Foundation of China.
文摘Polycyclotrimerization and polycoupling of acetylenic monomers respectively furnish hyperbranched polyarylenes and polyynes with high molecular weights (up to 1 × 10^6) in high yields (up to 99.9%). The polymers possess low intrinsic viscosities and high thermal stabilities, losing little of their weights when heated to 〉 400℃. Upon pyrolysis at 〉 800℃, the polymers graphitize with high char yields (up to 86%). Hyperbranched polyarylenes efficiently emit deep-blue to blue-green lights with fluorescence quantum yields up to 98% and strongly attenuate intense laser pulses with optical power-limiting performances superior to that of C60, a well-known optical limiter. Poly(alkenephenylenes), poly(aroylarylenes) and polyynes are readily cross-linkable by UV irradiation, serving as excellent photoresist materials for the generation of patterns with nanometer resolution. Thin films of hyperbranched polyynes exhibit very high refractive indexes (n up to 1.86). The internal and terminal acetylene moieties of the polyynes readily form complexes with cobalt carbonyls, which can be transformed into soft ferromagnetic ceramics with high magnetic susceptibilities (Ms up to ca. 118 emu/g) and near-zero magnetic losses.
文摘The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calorimetry (DSC) at various heating rates. The results were compared with the corresponding results by using 1,3-dihydroxybenzene(DHB) as a model compound. The results show that HHPP can enhance the cure reaction of DGEBA, resulting in the decrease of the peak temperature of the curing curve as well as the decrease of the activation energy because of the flexible --P--O-- groups in the backbone of HHPP. However, both the activation energy of the cured polymer and the peak temperature of the curing curve are increased with DHB as a curing agent. The cure kinetics of the DGEBA/HHPP system was calculated by using the isoconversional method given by Malek. It was found that the two-parameter autocatalytic model(Sestak-Berggren equation) is the most adequate one to describe the cure kinetics of the studied System at various heating rates. The obtained non-isothermal DSC curves from the experimental data show the results being accordant with those theoretically calculated.
文摘UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl acrylate (HEA), polyethyleneglycol (PEG-200)and nano-SiO2. The UV curing kinetics of the films was investigated by FTIR. The results show that the curing speed of the films increases with the adding of nano-SiO2 and decreases with the adding of PUDA due to the slower chain movement. The thermal stability of the HBPUA-PUDA/SiO2 films was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR). The results show that all films exhibit two degradation stages located at about 320 and 440℃ corresponding to the degradation for hard segments of urethane-acrylate and the degradation for soft segment and polyester core. In addition, the results from the analysis of TGA/FTIR also indicate that the decomposition temperature of HBPUA-PUDA/SiO2 film is 15℃ higher than that obtained for pure polymer. The degradation mechanism was proposed according to TGA/FTIR results.
基金the National Natural Science Foundation(No.50673031)of China and authors would like to extend thanks to Professor Yongming Chen at CAS.
文摘The monomer 2,6,12-triaminotriptycene was synthesized and the structure was confirmed by IR and 1H NMR spectra. Hyperbranched polyimides modified with different terminal groups were obtained from precursors, anhydride- and aminoterminated hyperbranched poly(amic acid)s from polymerization of A2 + B3 system. From gel permeation chromatograrn (GPC) characterization, representative products had high molecular weight. All polymers had good solubility in CHCl3, DMF and tetrahydrofuran (THF), and performed no detective Tgs in the range of 50-300 ℃ and high Tds above 455 ℃ when 5% weight loss.
基金the National Natural Science Foundation of China (No.20574041)
文摘Hyperbranched poly(amine-ester)s bearing self-complementary quadruple hydrogen bonding units display excellent mechanical and temperature-dependent melt rheological properties, which make them suitable as novel hot-melting materials.
基金National High Technology Research and Development Program of China(863program)(No.200803Z309)Optional Item of Shaanxi University of Science and Technology,China(No.ZX08-06)National Natural Science Foundation of China(No.20876090)
文摘A series of hyperbranched poly(amine-ester)polyols were synthesized by the polycondensation of N,N-diethylol-3-amine-methylpropionate(prepared by Michael addition reaction of methyl acrylate with diethanolamine)as an AB2-type monomer with trimethylol propane as the core moiety,proceeding in one-step procedure in the melt with p-toluenesulfonic acid as catalyst.The obtained monomer and polymers were characterized by FTIR and 1H-NMR spectroscopy.The solubility and surface activity in aqueous solution of the polymers were also examined.The gas permeability,water vapor permeability,and moisture absorption of microfiber synthetic leather treated by hyperbranched polymer were studied.The optimum conditions were that the dosage of dye and hyperbranched polymer was 5% and 10%,respectively.The water vapor permeability and moisture absorption of microfiber synthetic leather reached to 0.525 4 mg/(10 cm2·24 h)and 0.046 7 mg/(10 cm2·24 h).Compared with blank samples,they increased by 15% and 35%,respectively.However,the dosage of hyperbranched polymer has little influence on gas permeability of microfiber synthetic leather.SEM results show that the fiber of microfiber synthetic leather treated by hyperbranched polymer is incompact.
基金supported by the National Natural Science Foundation of China (21633008, 21733004, and 21603216)Jilin Province Science and Technology Development Program (20180101030JC)+2 种基金the Hundred Talents Program of Chinese Academy of Sciencesthe Recruitment Program of Foreign Experts (WQ20122200077)RFBR (18-53-53025)
文摘Hydrogen production from formic acid decomposition(FAD)is a promising means of hydrogen energy storage and utilization in fuel cells.Development of efficient catalysts for dehydrogenation of formic acid is a challenging topic.The surface chemical and electronic structure of the active catalysis components is important in formic acid decomposition at room-temperature.Here,the pyrdinic-nitrogen doped catalysts from hyperbranched polyamide were prepared via in situ polymerization reaction process by using activated carbon as a support.Because of the introduction of the polymer,the particles of the catalysts were stabilized,and the average particle diameter was only 1.64 nm.Under mild conditions,the catalysts activities were evaluated for FAD.The optimized Pd-N30/C catalyst exhibited high performance achieving almost full conversion,with a turnover frequency of 3481 h^-1 at 30℃.
文摘New acetylene monomers, 6-{[(1-naphthylethynyl-4-phenyl)carbonyl]oxy}-1-phenyl-1-hexyne (1), 2,5-diethynyl-thiophene (3), and 4,4'-diethynylbiphenyl (6) were synthesized. Homopolymerization of 1 and copolycyclotrimerizations of 3 and 6 with 1-heptyne and 1-octyne have been achieved with WCl6- and TaCl5-Ph4Sn catalysts, respectively, giving soluble linear disubstituted polyacetylene (2) and hyperbranched polyarylenes (5 and 8) with high molecular weights (up to 1.2 x 10(5)) in high yields (up to 98%). The structures and properties of the polymers are characterized and evaluated by R NMR, TGA, UV, photoluminescence (PL), and electroluminescence (EL) analyses. All the polymers possess high thermal stability and emit strong blue light upon photoexcitation. The intensity of the emitted light is greater than that of poly(1-phenyl-1-octyne), a well-known highly luminescent disubstituted polyacetylene. Little aggregation-induced red shift in the PL was observed in the thin films of the polymers. By constructing a multi-layer EL device, high EL quantum yield (0.18%) has been achieved in 2, which are the best results for substituted polyacetylenes attainable so far.
基金Funded by the National Natural Science Foundation of China(Nos.51203063,51103064)
文摘UV-curable hyperbranched polyurethane (UV-HBPU) containing carboxyl groups was synthesized from isophorone diisocyanate (IPDI), diethanolamine (DEOA), polyethylene glycol (PEG-400), hydroxyethyl acrylate (HEA), and 2,2-his (hydroxymethyl) propionic acid (DMPA). The UV-HBPU was used as a negative-type photoresist for a printed circuit board (PCB). Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopy of UV-HBPUs indicated that the synthesis was successful. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the thermal stability of the UV-HBPUs decreased as the HEA content increased. The polymer exhibited excellent photoresist properties, and the resolution of circuits based on this negative-type photoresist reached 10 μm.
基金This project was supported by the Research Grants Council of Hong Kong(Nos.603304,604903HKUST6085/02P).
文摘A series of new hyperbranched poly(aryleneethynylene)s are synthesized by the copolycyclotrimerizations oftetraynes(Ⅰand Ⅱ)with aliphatic monoynes(A-C)catalyzed by tantalum-,niobium-,and cobalt-based catalysts.All thereactions proceed smoothly and soluble polymers of high molecular weights(M_w up to 3.8×10~4)are obtained in high yields(up to 97%).
文摘A series of water soluble aliphatic hyperbranched poly(amido amine)s(PAMAMs) with the same or similar chemical structure of poly(amido amine) dendrimer was successfully synthesized from commercially available AB and C_n types of monomers by one-pot polymerization via the couple-monomer methodology(CMM). The AB type monomer used in this paper was methyl acrylate, and C_n monomers were multi-amino compounds such as ethylenediamine(EDA), diethylenetriamine(DETA), triethylenetetraamine(TETA), tetraethylenepentaamine(TEPA) and pentaethylenehexamine(PEHA). The reaction mechanism was investigated by means of the mass spectra of the reaction intermediates. Adjusting the feed ratio of AB to C_n, hyperbranched polymers with different terminal groups and properties were obtained. FTIR, NMR, DSC, and TGA were used to characterize the polymers. It was found that the polymers′ properties such as solubility, thermal behaviour and encapsulation capability varied with changing the feed ratio of AB to C_n. Benzoyl and palmitoyl groups were introduced into these macromolecules by acidylation to form amphiphilic hyperbranched polymers which have a high capability to encapsulate water soluble dyes such as Congo red. It is expected that the hyperbranched PAMAMs can play an important role in the industrial applications, such as coatings, cross-linking and phase-transferring agents because of their versatility and availability.
基金the National Science and Technology Support Project of "the Eleventh Five-year Plan"(2006BAE03B06-03)the New Century Talents Support Program of Chinese Education Department (NCET-04-0614)
文摘AB2-type-prepolymerized monomer was rapidly (2 h) prepared at room temperature (25 ℃) using commercially available maleic anhydride (MA) and diethanolamine (DEA) as raw materials. By employing toluene-p-sulfonic acid as a catalyzer, a series of hyperbranched poly(amide-ester) (HBPAE) were successfully synthesized from prepared AB2 monomer by solution condensation polymerization through "one-step process" or "pseudo one-step process" (using pentaerythritol as a center core). The processes were carried out at high temperature of 120 ℃ for 6 h in air atmosphere (inert protection free) with reduced pressure distillation (0.08--0.096 MPa). The results of FT-IR, UV-Vis, TGA, and intrinsic viscosity testing by Ubbelodhe viscometer showed that the prepared HBPAEs possess three-dimensional configuration with unsaturated conjugate structure, large numbers of branches and numerous terminal hydroxyl groups. These result in their low viscosity, high solubility and thermal stability.
基金Sponsored by the Ministerial Level Advanced Research Foundation (120701BQ0126)
文摘Nano-SiO2 was modified using silane coupling agent (KH-550) and hyperbranched poly(amine-ester) respectively, and Poly(vinyl chloride) (PVC)/modified nano-SiO2 composites were made by melt-blending. The composites' structures andmechanical properties were characterized by transmission electron microscopy(TEM), sanning electronic microscopy(SEM) and electronic universal testing machine. The results. show that nano-SiO2 grafted by hyperbranched poly (amine-ester) increases obviously in dispersion in PVC matrix, and mechanical properties of PVC are effectively improved. Moreover, it was found that mechanical properties of PVC/nano-SiO2 composites reach the best when weight percent of nano-SiO2 in PVC matrix is 1%. Compared with crude PVC, the tensile strength of hyperbranched poly (amine-ester) grafted nano-SiO2/ PVC composite increases by 24.68 % and its break elongation, flexural strength and impact strength increase by 15.73%, 4.07% and 1 841.84%, respectively. Moreover, the processing of the composites is improved.
基金the Startup Research Fund of Dongguan University of Technology(KCYKYQD2017015)Leading Talents of Innovation and Entrepreneurship of the Dongguan City D2017(16)the Australian Research Council(ARC)through the ARC Discovery project(DP160104340)。
文摘Binders are of vital importance in stabilizing the cathodes to enhance the cycling stability of lithiumsulfur(Li-S) batteries. However, conventional binders are typically confronted with the drawback of inability for adsorbing lithium polysulfide(Li PS), thus resulting in severe active material losing and rapid capacity fading. Herein, a novel water-soluble hyperbranched poly(amidoamine)(HPAA) binder with controllable hyperbranched molecular structure and abundant amino end groups for Li-S battery is designed and fabricated, which can improve efficient adsorption for Li PS and stability of the sulfur cathodes. Besides, the strong intermolecular hydrogen bonds in HPAA binder can contribute to the structural stability of S cathode and integration of the conductive paths. Therefore, the Li-S battery with this functional binder exhibits excellent cycle performance with a capacity retention of 91% after 200 cycles at 0.1 C.Even at a high sulfur loading of 5.3 mg cm-2, a specific capacity of 601 mA h g-1 can also be achieved.Density functional theory(DFT) calculation further demonstrates that the enhanced electrochemical stability derives from the high binding energy between amino groups and LiP S and the wide electrochemical window(6.87 e V) of HPAA molecule. Based on the above all, this functional polymer will lighten a new species of binders for eco-friendly sulfur cathodes and significantly promote the practical applications of high-performance Li-S batteries.
基金Supported by the National Natural Science Foundation of China(No.2 0 2 0 4 0 0 5 ,5 0 2 330 30 ) and Basic Research Fund ofTsinghua University(No.JC2 0 0 2 0 30 )
文摘A Aeries of hydroxylic hyperbranched polymers were derived from 2,2-bis(methylol) propionic acid and tris(methylol) propane reacted with acrylic acid to various extents. The obtained acrylated hyperbranched polymers alone or with a monofunctional diluent, isobornylene acrylate(IBOA) were further cured by UV radiation. The cured films based on the modified polymers alone all demonstrated poor mechanical properties due to their high network densities and low moving ability of polymer chains. For the composite systems, the cured films demonstrated improved mechanical properties due to the low network densities and high chain moving ability. With more IBOA included in the systems, acrylate groups can react to a higher extent during the curing process.
文摘The synthesis and characterization of hyperbranched polyester (HBP) with different molecular weight are studied. The effect of HBP on the modification of epoxy resins cured with anhydride is mainly discussed. The characteristics of HBP and the morphologies of cured system are determined by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and scanning electron microscope (SEM). The impact strength of cured system is detected and Fourier transform infrared (FTIR) measurements were used to pursue the curing process. The investigation shows that HBP can improve the toughness by forming copolymer networks between epoxy resins, HBP and anhydride. Moreover, when the molecular weight of HBP is 1342g/mol the toughening effect is the best, and the changes of toughness are small with the increase of molecular weight of HBP to 3500 g/mol.
文摘A facile and selective route for O-alkylation of highly hydrophilic, multifunctional hyperbranched polyglycerol (PG) under non-aqueous phase transfer catalyzed conditions in dimethyl sulfoxide was developed, through which several kinds of groups were introduced onto PG.