Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variabl...Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly.展开更多
In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the ...In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.展开更多
Hypersonic glide vehicles (HGVs) are launched by a solid booster and glide through the atmosphere at high speeds. HGVs will be important means for rapid long-range delivery in the future. Given that the glide is unp...Hypersonic glide vehicles (HGVs) are launched by a solid booster and glide through the atmosphere at high speeds. HGVs will be important means for rapid long-range delivery in the future. Given that the glide is unpowered, the initial glide conditions (IGCs) are crucial for flight. This paper aims to find the optimal IGCs to improve the maneuverability and decrease the con- straints of HGVs. By considering the IGCs as experiment factors, we design an orthogonal table with three factors that have five levels each by using the orthogonal experimental design method. Thereafter, we apply the Gauss pseudospectral method to perform glide trajectory optimization by using each test of the orthogonal table as the initial condition. Based on the analytic hierarchy process, an integrated indicator is established to evaluate the IGCs, which synthesizes the indexes of the maneuverability and constraints. The integrated indicator is calculated from the trajectory opti- mization results. Finally, optimal IGCs and valuable conclusions are obtained by using range anal- ysis, variance analysis, and regression analysis on the integrated indicator.展开更多
For modern phased array radar systems,the adaptive control of the target revisiting time is important for efficient radar resource allocation,especially in maneuvering target tracking applications.This paper presents ...For modern phased array radar systems,the adaptive control of the target revisiting time is important for efficient radar resource allocation,especially in maneuvering target tracking applications.This paper presents a novel interactive multiple model(IMM)algorithm optimized for tracking maneuvering near space hypersonic gliding vehicles(NSHGV)with a fast adaptive sam-pling control logic.The algorithm utilizes the model probabilities to dynamically adjust the revisit time corresponding to NSHGV maneuvers,thus achieving a balance between tracking accuracy and resource consumption.Simulation results on typical NSHGV targets show that the proposed algo-rithm improves tracking accuracy and resource allocation efficiency compared to other conventional multiple model algorithms.展开更多
The interception problem of Hypersonic Gliding Vehicles(HGVs)has been an important aspect of missile defense systems.In order to provide interceptors with accurate information of target trajectory,a model based on an ...The interception problem of Hypersonic Gliding Vehicles(HGVs)has been an important aspect of missile defense systems.In order to provide interceptors with accurate information of target trajectory,a model based on an improved Long Short-Time Memory(LSTM)network for trajectory prediction pipeline is proposed for the interception of a skip gliding hypersonic target.Firstly,for trajectory prediction required by intercepting guidance laws,the altitude,velocity and velocity direction of the target are formulated in the form of analytic functions,consisting of linear decay terms and amplitude decay sinusoidal terms.Then,the dynamic characteristics of the model parameters are analyzed,and the target trajectory prediction pipeline is proposed with the prediction error considered.Finally,an improved LSTM network is designed to estimate parameters in a dynamically-updated manner,and estimation results are used for the calculation of the final trajectory prediction pipeline.The proposed prediction algorithm provides information on the velocity vector for midcourse guidance with the effect of prediction errors on interception taken into account.Simulation is conducted and the results show the high accuracy of the algorithm in HGVs’trajectory prediction which is conducive to increasing the interception success rate.展开更多
Aimed at improving the real-time performance of guidance instruction generation,an analytical hypersonic reentry guidance framework is presented.The key steps of the novel guidance framework are the parameterization o...Aimed at improving the real-time performance of guidance instruction generation,an analytical hypersonic reentry guidance framework is presented.The key steps of the novel guidance framework are the parameterization of reentry guidance problems and the optimization of parameters.First,a quintic polynomial function of energy was designed to describe the altitude profile.Then,according to the altitude-energy profile,the altitude,velocity,flight path angle,and bank angle were obtained analytically,which naturally met the terminal constraints.In addition,the angle of the attack profile was determined using the velocity parameter.The swarm intelligent optimization algorithms were used to optimize the parameters.The path constraints were enforced by the penalty function method.Finally,extensive simulations were carried out in both nominal and dispersed cases,and the simulation results showed that the proposed guidance framework was effective,high-precision,and robust in different scenarios.展开更多
The conventional re-entry guidance method considerably limits the maneuverability of hypersonic glide vehicles under pre-given angle-of-attack profiles.To address this issue,based on a previous three-dimensional(3D)pr...The conventional re-entry guidance method considerably limits the maneuverability of hypersonic glide vehicles under pre-given angle-of-attack profiles.To address this issue,based on a previous three-dimensional(3D)profile guidance method,we propose a lateral-profile-first 3D profile optimization design strategy to solve the trajectory generation problem under complex conditions involving multiple constraints.Unlike the traditional method,which prioritizes the design of the longitudinal drag acceleration profiles,our method first converted the re-entry flight constraints into a lateral flight corridor,generated the initial lateral profile via parameterization,and solved the 3D profile using the coupling relationship between the longitudinal and lateral motions.The design of the 3D profile requires simultaneous consideration of waypoints,no-fly zones,and altitude profiles;hence,a new 3D profile optimization design model was constructed,and a customized sequential quadratic programming algorithm was employed to solve it.The advantages of the proposed method were demonstrated based on landing footprint results obtained using the lateral profile-first strategy.Finally,simulation results based on the common aero vehicle-high-performance model verified the feasibility and effectiveness of the strategy.展开更多
基金supported by the National High-tech R&D Program of China(863 Program)(2015AA7326042 2015AA8321471)
文摘Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly.
基金supported by the Science and Technology Innovation Program of Hunan Province(2021RC3078)。
文摘In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20116102120004)
文摘Hypersonic glide vehicles (HGVs) are launched by a solid booster and glide through the atmosphere at high speeds. HGVs will be important means for rapid long-range delivery in the future. Given that the glide is unpowered, the initial glide conditions (IGCs) are crucial for flight. This paper aims to find the optimal IGCs to improve the maneuverability and decrease the con- straints of HGVs. By considering the IGCs as experiment factors, we design an orthogonal table with three factors that have five levels each by using the orthogonal experimental design method. Thereafter, we apply the Gauss pseudospectral method to perform glide trajectory optimization by using each test of the orthogonal table as the initial condition. Based on the analytic hierarchy process, an integrated indicator is established to evaluate the IGCs, which synthesizes the indexes of the maneuverability and constraints. The integrated indicator is calculated from the trajectory opti- mization results. Finally, optimal IGCs and valuable conclusions are obtained by using range anal- ysis, variance analysis, and regression analysis on the integrated indicator.
文摘For modern phased array radar systems,the adaptive control of the target revisiting time is important for efficient radar resource allocation,especially in maneuvering target tracking applications.This paper presents a novel interactive multiple model(IMM)algorithm optimized for tracking maneuvering near space hypersonic gliding vehicles(NSHGV)with a fast adaptive sam-pling control logic.The algorithm utilizes the model probabilities to dynamically adjust the revisit time corresponding to NSHGV maneuvers,thus achieving a balance between tracking accuracy and resource consumption.Simulation results on typical NSHGV targets show that the proposed algo-rithm improves tracking accuracy and resource allocation efficiency compared to other conventional multiple model algorithms.
基金co-supported by the National Natural Science Foundation of China(No.61427809).
文摘The interception problem of Hypersonic Gliding Vehicles(HGVs)has been an important aspect of missile defense systems.In order to provide interceptors with accurate information of target trajectory,a model based on an improved Long Short-Time Memory(LSTM)network for trajectory prediction pipeline is proposed for the interception of a skip gliding hypersonic target.Firstly,for trajectory prediction required by intercepting guidance laws,the altitude,velocity and velocity direction of the target are formulated in the form of analytic functions,consisting of linear decay terms and amplitude decay sinusoidal terms.Then,the dynamic characteristics of the model parameters are analyzed,and the target trajectory prediction pipeline is proposed with the prediction error considered.Finally,an improved LSTM network is designed to estimate parameters in a dynamically-updated manner,and estimation results are used for the calculation of the final trajectory prediction pipeline.The proposed prediction algorithm provides information on the velocity vector for midcourse guidance with the effect of prediction errors on interception taken into account.Simulation is conducted and the results show the high accuracy of the algorithm in HGVs’trajectory prediction which is conducive to increasing the interception success rate.
基金co-supported by the National Natural Science Foundation of China(No.61773387)Tianjin Natural Science Foundation,China(No.20JCYBJC00880)。
文摘Aimed at improving the real-time performance of guidance instruction generation,an analytical hypersonic reentry guidance framework is presented.The key steps of the novel guidance framework are the parameterization of reentry guidance problems and the optimization of parameters.First,a quintic polynomial function of energy was designed to describe the altitude profile.Then,according to the altitude-energy profile,the altitude,velocity,flight path angle,and bank angle were obtained analytically,which naturally met the terminal constraints.In addition,the angle of the attack profile was determined using the velocity parameter.The swarm intelligent optimization algorithms were used to optimize the parameters.The path constraints were enforced by the penalty function method.Finally,extensive simulations were carried out in both nominal and dispersed cases,and the simulation results showed that the proposed guidance framework was effective,high-precision,and robust in different scenarios.
基金supported by the National Natural Science Foundation of China(Grant Nos.11902346,11502289,and 62173336)。
文摘The conventional re-entry guidance method considerably limits the maneuverability of hypersonic glide vehicles under pre-given angle-of-attack profiles.To address this issue,based on a previous three-dimensional(3D)profile guidance method,we propose a lateral-profile-first 3D profile optimization design strategy to solve the trajectory generation problem under complex conditions involving multiple constraints.Unlike the traditional method,which prioritizes the design of the longitudinal drag acceleration profiles,our method first converted the re-entry flight constraints into a lateral flight corridor,generated the initial lateral profile via parameterization,and solved the 3D profile using the coupling relationship between the longitudinal and lateral motions.The design of the 3D profile requires simultaneous consideration of waypoints,no-fly zones,and altitude profiles;hence,a new 3D profile optimization design model was constructed,and a customized sequential quadratic programming algorithm was employed to solve it.The advantages of the proposed method were demonstrated based on landing footprint results obtained using the lateral profile-first strategy.Finally,simulation results based on the common aero vehicle-high-performance model verified the feasibility and effectiveness of the strategy.