期刊文献+
共找到326篇文章
< 1 2 17 >
每页显示 20 50 100
Accurately tracking hypersonic gliding vehicles via an LEO mega-constellation in relay tracking mode
1
作者 LI Zhao WANG Yidi ZHENG Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期211-221,共11页
In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the ... In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode. 展开更多
关键词 target tracking mega-constellation hypersonic gliding vehicle(HGV) sensor selection observability analysis
下载PDF
Effect of attack angle on the electromagnetic wave transmission characteristics in the hypersonic plasma sheath of a re-entry vehicle
2
作者 Xin AI Qiuyue NIE +4 位作者 Zhonglin ZHANG Peiqi CHEN Shulei ZHENG Changshi YAN Guoqiang WEI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期49-62,共14页
The attack angle may greatly affect the hypersonic plasma sheaths around the re-entry vehicle,thereby affecting the transmission characteristics of electromagnetic(EM)waves in the sheaths.In this paper,we propose an i... The attack angle may greatly affect the hypersonic plasma sheaths around the re-entry vehicle,thereby affecting the transmission characteristics of electromagnetic(EM)waves in the sheaths.In this paper,we propose an integrated three-dimensional(3D)model with various attack angles and realistic flying conditions of radio attenuation measurement C-II(RAM C-II)re-entry tasks for analyzing the effect of the attack angle on the transmission characteristics of EM waves in the sheaths.It is shown that the electron density and collision frequency of the sheath on the windward side can be increased by an order of magnitude with the increase of the attack angle.Meanwhile,the thickness of the sheath on the leeward side is increased where the electron density and collision frequency are reduced.The EM waves are mainly reflected on the windward plasma sheath due to the cutoff effect,and the radio-frequency(RF)blackout is mitigated if the antenna is positioned on the leeward side.Thus,by planning the trajectory properly and installing the antenna accordingly during the re-entry,it is possible to provide an approach for mitigation of the RF blackout problem to an extent. 展开更多
关键词 attack angle hypersonic plasma sheath re-entry vehicle transmission characteristics
下载PDF
Nonlinear metamaterial enabled aeroelastic vibration reduction of a supersonic cantilever wing plate
3
作者 Peng SHENG Xin FANG +1 位作者 Dianlong YU Jihong WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1749-1772,共24页
The violent vibration of supersonic wings threatens aircraft safety.This paper proposes the strongly nonlinear acoustic metamaterial(NAM)method to mitigate aeroelastic vibration in supersonic wing plates.We employ the... The violent vibration of supersonic wings threatens aircraft safety.This paper proposes the strongly nonlinear acoustic metamaterial(NAM)method to mitigate aeroelastic vibration in supersonic wing plates.We employ the cantilever plate to simulate the practical behavior of a wing.An aeroelastic vibration model of the NAM cantilever plate is established based on the mode superposition method and a modified third-order piston theory.The aerodynamic properties are systematically studied using both the timedomain integration and frequency-domain harmonic balance methods.While presenting the flutter and post-flutter behaviors of the NAM wing,we emphasize more on the preflutter broadband vibration that is prevalent in aircraft.The results show that the NAM method can reduce the low-frequency and broadband pre-flutter steady vibration by 50%-90%,while the post-flutter vibration is reduced by over 95%,and the critical flutter velocity is also slightly delayed.As clarified,the significant reduction arises from the bandgap,chaotic band,and nonlinear resonances of the NAM plate.The reduction effect is robust across a broad range of parameters,with optimal performance achieved with only 10%attached mass.This work offers a novel approach for reducing aeroelastic vibration in aircraft,and it expands the study of nonlinear acoustic/elastic metamaterials. 展开更多
关键词 nonlinear acoustic metamaterial(NAM) hypersonic aeroelastic vibration vibration reduction fluid-structure interaction
下载PDF
Trigonometric Regularization and Continuation Method Based Time-Optimal Control of Hypersonic Vehicles
4
作者 LIN Yujie HAN Yanhua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期52-59,共8页
Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy... Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently. 展开更多
关键词 hypersonic vehicle(HSV) optimal control trigonometric regularization method(TRM) continuation method
下载PDF
Scale effect removal and range migration correction for hypersonic target coherent detection
5
作者 WU Shang SUN Zhi +4 位作者 JIANG Xingtao ZHANG Haonan DENG Jiangyun LI Xiaolong CUI Guolong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期14-23,共10页
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit... The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT. 展开更多
关键词 hypersonic target detection coherent integration(CI) scale effect(SE)removal range migration(RM)correction scaled location rotation transform(ScLRT)
下载PDF
Minimum eigenvalue based adaptive fault compensation for hypersonic vehicles
6
作者 MA Yajie JIANG Bin REN Hao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期492-500,共9页
The attitude tracking control problem is addressed for hypersonic vehicles under actuator faults that may cause an uncertain time-varying control gain matrix.An adaptive compensation scheme is developed to ensure syst... The attitude tracking control problem is addressed for hypersonic vehicles under actuator faults that may cause an uncertain time-varying control gain matrix.An adaptive compensation scheme is developed to ensure system stability and asymptotic tracking properties,including a kinematic control signal and a dynamic control signal.To deal with the uncertainties of the control gain matrix,a new positive definite one is constructed.The minimum eigenvalue of such a new control gain matrix is estimated.Simulation results of application to an X-33 vehicle model verify the effectiveness of the proposed minimum eigenvalue based adaptive fault compensation scheme. 展开更多
关键词 actuator fault adaptive compensation hypersonic vehicle minimum eigenvalue
下载PDF
Fault-tolerant FADS system development for a hypersonic vehicle via neural network algorithms
7
作者 Qian Wan Minjie Zhang +1 位作者 Guang Zuo Tianbo Xie 《Theoretical & Applied Mechanics Letters》 CSCD 2023年第5期357-366,共10页
Hypersonic vehicles suffer from extreme aerodynamic heating during flights, especially around the area of leading edge due to its small curvature. Therefore, flush air data sensing(FADS) system has been developed to p... Hypersonic vehicles suffer from extreme aerodynamic heating during flights, especially around the area of leading edge due to its small curvature. Therefore, flush air data sensing(FADS) system has been developed to perform accurate measurement of the air data parameters. In the present study, the method to develop the FADS algorithms with fail-operational capability for a sharp-nosed hypersonic vehicle is provided. To be specific, the FADS system implemented with 16 airframe-integrated pressure ports is used as a case study. Numerical simulations of different freestream conditions have been conducted to generate the database for the FADS targeting in 2 ≤ Ma ≤ 5 and 0 km ≤ H ≤ 30 km. Four groups of neural network algorithms have been developed based on four different pressure port configurations, and the accuracy has been validated by 280 groups of simulations. Particularly, the algorithms based on the 16-port configuration show an excellent ability to serve as the main solver of the FADS, where 99. 5% of the angle-of-attack estimations are within the error band ±0. 2°. The accuracy of the algorithms is discussed in terms of port configuration. Furthermore, diagnosis of the system health is present in the paper. A fault-tolerant FADS system architecture has been designed, which is capable of continuously sensing the air data in the case that multi-port failure occurs, with a reduction in the system accuracy. 展开更多
关键词 FADS System Hypersonic vehicle Neural network Numerical simulation Fault detection Redundancy management
下载PDF
Effect of local wall temperature on hypersonic boundary layer stability and transition
8
作者 鲁锐洋 黄章峰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期508-517,共10页
Wall temperature significantly affects stability and receptivity of the boundary layer. Changing the wall temperature locally may therefore be an effective laminar flow control technique. However, the situation is com... Wall temperature significantly affects stability and receptivity of the boundary layer. Changing the wall temperature locally may therefore be an effective laminar flow control technique. However, the situation is complicated when the wall temperature distribution is nonuniform, and researchers have experimentally found that local wall cooling may delay the onset of transition. We attempt to clarify the physical mechanisms whereby the local wall temperature affects the transition and the stability of a hypersonic boundary layer. A numerical investigation of the disturbance evolution in a Mach-6 sharp cone boundary layer with local wall heating or cooling is conducted. Direct numerical simulation(DNS) is performed for the single-frequency and broadband disturbance evolution caused by random forcing. We vary the local wall temperature and the location of heating/cooling, and then use the eNmethod to estimate the transition onset. Our results show that local wall cooling amplifies high-frequency unstable waves while stabilizing low-frequency unstable waves, with local heating amplifying all unstable waves locally. The disturbance amplitude and second-mode peak frequency obtained by DNS agree well with the previous experimental results. Local cooling/heating has a dual effect on the stability of the hypersonic boundary layer. For local cooling, while it effectively inhibits the growth of the low-frequency unstable waves that dominate the transition downstream, it also further destabilizes the downstream flow. In addition, while upstream cooling can delay the transition, excessive cooling may promote it;local heating always slightly promotes the transition.Finally, recommendations are given for practical engineering applications based on the present results. 展开更多
关键词 hypersonic boundary layers direct numerical simulations linear stability theory
下载PDF
20 ppm Anhydrous Ammonia Odor Agent Proposed for Hydrogen Fuel for Safe Detection of Leaks
9
作者 Daniel Nelson Russell 《Detection》 CAS 2023年第1期1-6,共6页
Preferably 20 ppm anhydrous ammonia (NH<sub>3</sub>) is proposed to be added to hydrogen fuel (H) made from renewable energy sources (green hydrogen), so that H leaks may be easily detectable by smell, but... Preferably 20 ppm anhydrous ammonia (NH<sub>3</sub>) is proposed to be added to hydrogen fuel (H) made from renewable energy sources (green hydrogen), so that H leaks may be easily detectable by smell, but not dangerously toxic. Including this odor agent, would allow H to be distributed safely in pipes, as required by law, and it would allow H to be safely stored, transported, and exported for sale, and widely commercialized. Further research is suggested to identify optimum pressure, temperature, and automated technique for injecting NH<sub>3</sub> into H, and to chart the minimum concentration needed, as a function of temperature and humidity. An application to make hypersonic H burning aircraft safer for ground maintenance crews is proposed. An ability to make, store and distribute H, made from local sources of renewable energy, would reduce a need for fossil fuels, especially in poor, remote communities, where it could improve their economy by creating an export product for sale, while reducing pollution. 展开更多
关键词 HYDROGEN Renewable Energy Anhydrous Ammonia Hydrogen Gas Distribution System ODORANT Odor Agent Green Hydrogen Hypersonic Aircraft
下载PDF
ADRC FRACTIONAL ORDER PID CONTROLLER DESIGN OF HYPERSONIC FLIGHT VEHICLE 被引量:8
10
作者 秦昌茂 齐乃明 +1 位作者 吕瑞 朱凯 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第3期240-245,共6页
Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i... Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters. 展开更多
关键词 hypersonic flight vehicle active disturbance rejection controller(ADRC) fractional order PID D-decomposition method
下载PDF
ANALYSIS OF INTERNAL WAVERIDER INLET AND TYPICAL SIDEWALL COMPRESSION INLET PERFORMANCE 被引量:4
11
作者 黄国平 朱呈祥 +1 位作者 尤延铖 周淼 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期120-128,共9页
A new internal waverider inlet with a rectangular shape of entrance and exit in front view is designed at Ma=6.0.The design is based on a better basic flowfield ICFC than traditional one and derived with the technolog... A new internal waverider inlet with a rectangular shape of entrance and exit in front view is designed at Ma=6.0.The design is based on a better basic flowfield ICFC than traditional one and derived with the technology of stream tracing and shock cutting.Comparison between the newly designed inlet and a typical sidewall compression inlet is given.The design Mach number and entrance shape of this new inlet are chosen according to the sidewall compression inlet.Numerical results show that most of the performance parameters of the internal waverider inlet are a bit higher than the sidewall inlet,such as the flow capture coefficient,total pressure recovery and the kinetic efficiency.The performances of these two inlets at off-design points are compared.The internal waverider inlet can capture more than 91% of incoming flow under all simulated conditions.Results show that internal waverider inlet using 3-D compression and high flow capture coefficient is a kind of fixed-geometry inlet with better performance. 展开更多
关键词 HYPERSONIC PERFORMANCE internal waverider inlet sidewall compression inlet
下载PDF
MODAL FREQUENCY CHARACTERISTICS OF AXIALLY MOVING BEAM WITH SUPERSONIC/HYPERSONIC SPEED 被引量:4
12
作者 王亮 陈怀海 贺旭东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第2期163-168,共6页
The vibration characteristics of transverse oscillation of an axially moving beam with high velocity is in- vestigated. The vibration equation and boundary conditions of the free-free axially moving beam are derived u... The vibration characteristics of transverse oscillation of an axially moving beam with high velocity is in- vestigated. The vibration equation and boundary conditions of the free-free axially moving beam are derived using Hamilton's principle. Furthermore, the linearized equations are set up based on Galerkinl s method for the ap- proximation solution. Finally, three influencing factors on the vibration frequency of the beam are considered: (1) The axially moving speed. The first order natural frequency decreases as the axial velocity increases, so there is a critical velocity of the axially moving beam. (2) The mass loss. The changing of the mass density of some part of the beam increases the beam natural frequencies. (3) The thermal effect.' The temperature increase will decrease the beam elastic modulus and induce the vibration frequencies descending. 展开更多
关键词 axially moving beam VIBRATION thermal effect supersonic/hypersonic
下载PDF
PARALLEL COMPUTATION OF 3-D HYPERSONIC FLOWS ON UNSTRUCTURED HYBRID MESHES 被引量:3
13
作者 王江峰 伍贻兆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第3期200-205,共6页
A parallel virtual machine (PVM) protocol based parallel computation of 3-D hypersonic flows with chemical non-equilibrium on hybrid meshes is presented. The numerical simulation for hypersonic flows with chemical n... A parallel virtual machine (PVM) protocol based parallel computation of 3-D hypersonic flows with chemical non-equilibrium on hybrid meshes is presented. The numerical simulation for hypersonic flows with chemical non-equilibrium reactions encounters the stiffness problem, thus taking huge CPU time. Based on the domain decomposition method, a high efficient automatic domain decomposer for three-dimensional hybrid meshes is developed, and then implemented to the numerical simulation of hypersonic flows. Control equations are multicomponent N-S equations, and spatially discretized scheme is used by a cell-centered finite volume algorithm with a five-stage Runge-Kutta time step. The chemical kinetic model is a seven species model with weak ionization. A point-implicit method is used to solve the chemical source term. Numerical results on PC-Cluster are verified on a bi-ellipse model compared with references. 展开更多
关键词 hypersonic speed hybrid mesh domain decomposition PARALLELIZATION
下载PDF
Optical Diagnostics in Rarefied Flows
14
作者 Jean-Pierrer TARAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第2期151-159,共9页
This article reviews the instrumental developments accomplished at ONERA in order to perform precise non-intrusive measurements of hypersonic flows using laser- and electron-beam-based optical techniques. Point line o... This article reviews the instrumental developments accomplished at ONERA in order to perform precise non-intrusive measurements of hypersonic flows using laser- and electron-beam-based optical techniques. Point line of sight and imaging measurements are possible. Point measurements have been implemented with Electron Beam Fluorescence (EBF) using detection of X-ray radiation and Coherent anti-Stokes Raman Scattering (CARS). When spatial resolution is not required, diode laser absorption spectroscopy yields results integrated along a line. EBF imaging using a high energy pulsed electron gun is also quite promising. Rotational and vibrational populations of nitrogen and nitric oxide have been measured in various hypersonic hyperenthalpic facilities, as well as rotational state-resolved velocities in shocks and boundary layers. 展开更多
关键词 hypersonics optical measurements CARS EBF LASERS ABSORPTION
下载PDF
On the mechanism by which nose bluntness suppresses second-mode instability
15
作者 Armani Batista Arham Amin Khan Joseph Kuehl 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第4期230-240,共11页
A physical mechanism by which nose bluntness suppresses second-mode instability is proposed.Considered are 7 degree half-angle straight cones with nose bluntness radii of 0.15 mm, 3.556 mm,5 mm, 9.525 mm, 12.7 mm and ... A physical mechanism by which nose bluntness suppresses second-mode instability is proposed.Considered are 7 degree half-angle straight cones with nose bluntness radii of 0.15 mm, 3.556 mm,5 mm, 9.525 mm, 12.7 mm and 25.4 mm at tunnel conditions relevant to the AFOSR-Notre Dame Large Mach 6 Quiet Tunnel. It is shown that second-mode suppression is achieved via entropy layer modulation of the basic state density gradient. A weakening of the density gradient disrupts the acoustic resonance necessary to sustain second-mode growth. These results are consistent with the thermoacoustic interpretation which posits that second-mode instability can be modeled as thermoacoustic resonance of acoustic energy trapped within an acoustic impedance well.Furthermore, the generalized inflection point criterion of Lees and Lin is applied to develop a criterion for the existence of second-mode instability based on the strength of the basic state density gradient. 展开更多
关键词 Second mode instability hypersonics boundary layer Blunt body paradox Entropy layer
下载PDF
Hypersonic Waverider Surface Development Using Aerodynamic Flow Around Conical Bodies
16
作者 Najam-us-Saqib 《Computer Aided Drafting,Design and Manufacturing》 2006年第1期63-69,共7页
Developing the waverider based hypersonic vehicles is an inverse design process in which shape is developed from a known flow field by tracing of streamlines to form a stream surface. The flow field can be based on a ... Developing the waverider based hypersonic vehicles is an inverse design process in which shape is developed from a known flow field by tracing of streamlines to form a stream surface. The flow field can be based on a solution of Taylor Maccoll equation for a specified shock or cone angle. This Paper discusses the development of waverider shapes for hypersonic reentry vehicles. 展开更多
关键词 aerodynamic design hypersonics waveriders surface generation
下载PDF
Active Aerothermoelastic Control of Hypersonic Double-wedge Lifting Surface 被引量:4
17
作者 Laith K Abbas 陈前 +2 位作者 Piergiovanni Marzocca Gürdal Zafer Abdalla Mostafa 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第1期8-18,共11页
Designing re-entry space vehicles and high-speed aircraft requires special attention to the nonlinear thermoelastic and aerodynamic instability of their structural components. The thermal effects are important since t... Designing re-entry space vehicles and high-speed aircraft requires special attention to the nonlinear thermoelastic and aerodynamic instability of their structural components. The thermal effects are important since temperature environment brings dramatic influences on the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes and is likely to cause instability, catastrophic failure and oscillations resulting in structural failure due to fatigue. In order to understand the dynamic behaviors of these "hot" structures, a double-wedge lifting surface with combining freeplay and cubic structural nonlinearities in both plunging and pitching degrees-of-freedom operating in supersonic/hypersonic flight speed regimes has been analyzed. A third order piston theory aerodynamic is used to estimate the applied nonlinear unsteady aerodynamic loads. Also considered is the loss of torsional stiffness that may be incurred by lifting surfaces subject to axial stresses induced by aerodynamic heating. The aerodynamic heating effects are estimated based on the adiabatic wall temperature due to high speed airstreams. As a recently emerging technology, the active aerothermoelastic control is aimed at providing solutions to a large number of problems involving the aeronautical/aerospace flight vehicle structures. To prevent such damaging phenomena from occurring, an application of linear and nonlinear active control methods on both flutter boundary and post-flutter behavior has been fulfilled. In this paper, modeling issues as well as numerical simulation have been presented and pertinent conclusions outlined. It is evidenced that a serious loss of torsional stiffness may induce the dynamic instability; however active control can be used to expand the flutter boundary and convert unstable limit cycle oscillations (LCO) into the stable LCO and/or to shift the transition between these two states toward higher flight Mach numbers. 展开更多
关键词 active control aerothermoelastic analysis freeplay hypersonic speed
下载PDF
Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design 被引量:30
18
作者 Jingmei Zhang Changyin Sun +1 位作者 Ruimin Zhang Chengshan Qian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期94-101,共8页
Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near... Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle (NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 AIRSHIPS Angular velocity Attitude control BACKSTEPPING Control theory Design Functions Hypersonic aerodynamics Hypersonic vehicles Navigation Radial basis function networks Sliding mode control Uncertainty analysis Vehicles
下载PDF
Progress in reentry trajectory planning for hypersonic vehicle 被引量:27
19
作者 Jiang Zhao Rui Zhou Xuelian Jin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期627-639,共13页
The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in mee... The reentry trajectory planning for hypersonic vehicles is critical and challenging in the presence of numerous nonlinear equations of motion and path constraints, as well as guaranteed satisfaction of accuracy in meeting all the specified boundary conditions. In the last ten years, many researchers have investigated various strategies to generate a feasible or optimal constrained reentry trajectory for hypersonic vehicles. This paper briefly reviews the new research efforts to promote the capability of reentry trajectory planning. The progress of the onboard reentry trajectory planning, reentry trajectory optimization, and landing footprint is summarized. The main challenges of reentry trajectory planning for hypersonic vehicles are analyzed, focusing on the rapid reentry trajectory optimization, complex geographic constraints, and coop- erative strategies. 展开更多
关键词 hypersonic vehicle reentry trajectory planning on-board planning reentry trajectory optimization footprint.
下载PDF
Continuous Sliding Mode Controller with Disturbance Observer for Hypersonic Vehicles 被引量:12
20
作者 Chaoxu Mu Qun Zong +1 位作者 Bailing Tian Wei Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期45-55,共11页
In this paper, a continuous sliding mode controller with disturbance observer is proposed for the tracking control of hypersonic vehicles to suppress the chattering. The finite time disturbance observer is involved to... In this paper, a continuous sliding mode controller with disturbance observer is proposed for the tracking control of hypersonic vehicles to suppress the chattering. The finite time disturbance observer is involved to make that the continuous sliding mode controller has the property of disturbance rejection. Due to continuous terms replacing the discontinuous term of traditional sliding mode control, switching modes of velocity and altitude firstly arrive at small regions with respect to disturbance observation errors. Switching modes keep zero and velocity and altitude asymptotically converge to their reference commands after disturbance observation errors disappear. Simulation results have proved the proposed method can guarantee the tracking of velocity and altitude with continuous sliding mode control laws, and also has the fast convergence rate and robustness. © 2014 Chinese Association of Automation. 展开更多
关键词 AIRSHIPS Altitude control Controllers Disturbance rejection ERRORS Hypersonic aerodynamics Hypersonic vehicles Robustness (control systems) Vehicles
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部