期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Estimating the crop leaf area index using hyperspectral remote sensing 被引量:17
1
作者 LIU Ke ZHOU Qing-bo +2 位作者 WU Wen-bin XIA Tian TANG Hua-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第2期475-491,共17页
The leaf area index(LAI) is an important vegetation parameter,which is used widely in many applications.Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop cano... The leaf area index(LAI) is an important vegetation parameter,which is used widely in many applications.Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies.During the last two decades,hyperspectral remote sensing has been employed increasingly for crop LAI estimation,which requires unique technical procedures compared with conventional multispectral data,such as denoising and dimension reduction.Thus,we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques.First,we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation.Second,we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types:approaches based on statistical models,physical models(i.e.,canopy reflectance models),and hybrid inversions.We summarize and evaluate the theoretical basis and different methods employed by these approaches(e.g.,the characteristic parameters of LAI,regression methods for constructing statistical predictive models,commonly applied physical models,and inversion strategies for physical models).Thus,numerous models and inversion strategies are organized in a clear conceptual framework.Moreover,we highlight the technical difficulties that may hinder crop LAI estimation,such as the "curse of dimensionality" and the ill-posed problem.Finally,we discuss the prospects for future research based on the previous studies described in this review. 展开更多
关键词 hyperspectral inversion leaf area index LAI retrieval
下载PDF
Retrieval of leaf biochemical properties by inversed PROSPECT model and hyperspectral indices:an application to Populus euphratica polymorphic leaves 被引量:4
2
作者 ZhongGuo MA Xi CHEN +2 位作者 Quan WANG PingHeng LI Guli Jiapaer 《Journal of Arid Land》 SCIE 2012年第1期52-62,共11页
Leaf biochemical properties have been widely assessed using hyperspectral reflectance information by inversion of PROSPECT model or by using hyperspectral indices, but few studies have focused on arid ecosystems. As a... Leaf biochemical properties have been widely assessed using hyperspectral reflectance information by inversion of PROSPECT model or by using hyperspectral indices, but few studies have focused on arid ecosystems. As a dominant species of riparian ecosystems in arid lands, Populus euphratica Oliv. is an unusual tree species with polymorphic leaves along the vertical profile of canopy corresponding to different growth stages. In this study, we evaluated both the inversed PROSPECT model and hyperspectral indices for estimating biochemical properties of P. euphratica leaves. Both the shapes and biochemical properties of P. euphratica leaves were found to change with the heights from ground surface. The results indicated that the model inversion calibrated for each leaf shape performed much better than the model calibrated for all leaf shapes, and also better than hyperspectral indices. Similar results were obtained for estimations of equivalent water thickness (EWT) and leaf mass per area (LMA). Hyperspectral indices identified in this study for estimating these leaf properties had root mean square error (RMSE) and R2 values between those obtained with the two calibration strategies using the inversed PROSPECT model. Hence, the inversed PROSPECT model can be applied to estimate leaf biochemical properties in arid ecosystems, but the calibration to the model requires special attention. 展开更多
关键词 Populus euphratica inversed model hyperspectral index vertical profile polymorphic leaf
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部