DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-bu...DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.展开更多
Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin ...Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin (EPO) in vivo and in vitro. Methods Rat model of cerebral ischemia was established by middle cerebral artery occlusion with or without DFO administration. Infarct size was examined by TTC staining, and the neurological severity score was evaluated according to published method. Cortical neurons were cultured under ischemia stress which was mimicked by oxygen-glucose deprivation (OGD), and the neuron damage was assessed by MTT assay. Immunofluorescent staining was employed to detect the expressions of HIF-1 and EPO. Results The protective effect induced by DFO (decreasing the infarction volume and ameliorating the neurological function) appeared at 2 d after administration ofDFO (post-DFO), lasted until 7 d and disappeared at 14 d (P 〈 0.05); the most effective action was observed at 3 d post-DFO. DFO induced tolerance of cultured neurons against OGD: neuronal viability was increased 23%, 34%, 40%, 48% and 56% at 8 h, 12 h, 24 h, 36 h, and 48 h, respectively, post-DFO (P 〈 0.05). Immunofluorescent staining found that HIF-1 α and EPO were upregulated in the neurons of rat brain at 3 d and 7 d post-DFO; increase of HIF-1 α and EPO appeared in cultured cortex neurons at 36 h and 48 h post-DFO. Conclusion DFO induced tolerance against focal cerebral ischemia in rats, and exerted protective effect on OGD cultured cortical neurons. DFO significant induced the expression of HIF- 1 α and EPO both in vivo and in vitro. DFO preconditioning can protect against cerebral ischemia, which may be associated with the synthesis of HIF- 1 α and EPO.展开更多
The role of the hypoxia-inducible factor(HIF)subunits 1α and 2α in response to hypoxia is well established in lungepithelial cells,whereas little is known about HIF-3α with respect to transcriptional and translatio...The role of the hypoxia-inducible factor(HIF)subunits 1α and 2α in response to hypoxia is well established in lungepithelial cells,whereas little is known about HIF-3α with respect to transcriptional and translational regulation by hy-poxia.HIF-3α and HIF-1α are two similar but distinct basic helix-loop-helix-PAS proteins,which have been postulatedto activate hypoxia responsive genes in response to hypoxia.Here,we used quantitative real time RT-PCR and immu-noblotting to determine the activation of HIF-3α vs.HIF-1α by hypoxia.HIF-3α was strongly induced by hypoxia(1%O_2)both at the level of protein and mRNA due to an increase in protein stability and transcriptional activation,whereasHIF-1α protein and mRNA levels enhanced transiently and then decreased because of a reduction in its mRNA stabilityin A549 cells,as measured on mRNA and protein levels.Interestingly,HIF-3α and HIF-1α exhibited strikingly similarresponses to a variety of activating or inhibitory pharmacological agents.These results demonstrate that HIF-3α is ex-pressed abundantly in lung epithelial cells,and that the transcriptional induction of HIF-3α plays an important role in theresponse to hypoxia in vitro.Our findings suggest that HIF-3α,as a member of the HIF system,is complementary ratherthan redundant to HIF-1α induction in protection against hypoxic damage in alveolar epithelial cells.展开更多
Summary: In order to investigate the expression of nerve growth factor (NGF) and hypoxia inducible factor-1α (HIF-1α) and its correlation with angiogenesis in non-small cell lung cancer (NSCLC), paraffin-embe...Summary: In order to investigate the expression of nerve growth factor (NGF) and hypoxia inducible factor-1α (HIF-1α) and its correlation with angiogenesis in non-small cell lung cancer (NSCLC), paraffin-embedded tissue blocks from 20 patients with NSCLC were examined. Twenty corresponding para-cancerous lung tissue specimens were obtained to serve as a control. The expression of NGF, HIF-1α, and vascular endothelial growth factor (VEGF) in the NSCLC tissues was detected by using immunohistochemistry. The microvascular density (MVD) was determined by CD31 staining. The resuits showed that the expression levels ofNGF, HIF-1α and VEGF in the NSCLC tissues were remarkably higher than those in the para-cancerous lung tissues (P〈0.05). There was significant difference in the MVD between the NSCLC tissues (9.19±1.43) and para-cancerous lung tissues (2.23±1.19) (P〈0.05). There were positive correlations between NGF and VEGF, between HIF-1α and VEGF, and between NGF and HIF-1α in NSCLC tissues, with the spearman correlation coefficient being 0.588, 0.519 and 0.588, respectively. In NSCLC tissues, the MVD had a positive correlation with the three factors (P〈0.05). Theses results suggest that NGF and HIF-1α are synergically involved in the angiogenesis of NSCLC.展开更多
Hepatocellular carcinoma(HCC) is one of the most commonly diagnosed and deadly cancers worldwide; its incidence has been rising in the United States due to the increase in hepatitis C associated cirrhosis and the grow...Hepatocellular carcinoma(HCC) is one of the most commonly diagnosed and deadly cancers worldwide; its incidence has been rising in the United States due to the increase in hepatitis C associated cirrhosis and the growing epidemic of obesity. There have been no effective therapeutic options in the advanced disease setting beyond sorafenib, a multi-targeted tyrosine kinase inhibitor that showed significant survival benefit. Because of this, there is an urgent need to search for novel pathways in sorafenib experienced patients. This review will focus on the role of hypoxia and hypoxiainducible factor alpha(HIF-1α) in cancer development, specifically in HCC. We will discuss the biology of HIF-1α, the pathways with which it interacts, and the function of HIF-1α in HCC. Furthermore, we will review studies highlighting the relevance of HIF-1α in the clinical setting, as well as the pre-clinical data supporting its further investigation. Finally, we will conclude with a discussion of the potential role of a HIF-1α m RNA antagonist for the treatment of HCC, and hypothesize the ways in which such an inhibitor may be best utilized in the management of advanced HCC. Hypoxia plays a significant role in the development of HCC. HIF-1α is a key transcription factor involved in the hypoxic response of cancer cells. It activates transcription of genes responsible for angiogenesis, glucose metabolism, proliferation, invasion and metastasis in HCC. Its involvement in multiple, essential tumor pathways makes it an attractive potential therapeutic target in HCC.展开更多
Summary: To study the role and mechanisms of hypoxia-inducible factor-lalpha (HIF-1α on the growth and tumorigenicity of lung cancer cells A549, the antisense oligonucleotide of HIF-1α was transfected to A549 cell...Summary: To study the role and mechanisms of hypoxia-inducible factor-lalpha (HIF-1α on the growth and tumorigenicity of lung cancer cells A549, the antisense oligonucleotide of HIF-1α was transfected to A549 cells. The effect of the antisense oligonucleotide on tumor growth in vitro and in vivo was evaluated by the growth rate suppression of A549 cells and subcutaneous implanted tumor in nude mice, and the effect on tumorigenicity was evaluated by the expression inhibition of angiogenic factors, the microvessel density (MVD)and vascular endothelial growth factor (VEGF) protein expression which were detected by immohistochemistry and western blot respectively. This study revealed that in vitro the growth rate of antisense oligonucleotide group was significantly decreased as compared with that of control group, sense oligonucleotide group and false-sense oligonucleotide group; in vivo the weight of implanted tumors in nude mice of antisense oligonucleotide group was 1.51±0.40 g, which was significantly lower than that of control group (2.79±0.33 g), sense oligonucleotide group (2.81±0.45g) and false-sense oligonucleotide group (2.89±0.39 g) and the inhibitory rate was 47 %. Both MVD and VEGF protein expression were significantly inhibited in antisense oligonucleotide group compared with those in other groups. These results indicated that antisense oligonucleotide of HIF-1α could inhibit lung cancer cells A549 growth in vitro and in vivo, and the mechanism may be due to the inhibition of vascular growth and VEGF protein expression.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a malignant tumor that occurs in the liver.Its onset is latent,and it shows high heterogeneity and can readily experience intrahepatic metastasis or systemic metastasis,which...BACKGROUND Hepatocellular carcinoma(HCC)is a malignant tumor that occurs in the liver.Its onset is latent,and it shows high heterogeneity and can readily experience intrahepatic metastasis or systemic metastasis,which seriously affects patients’quality of life.Numerous studies have shown that hypoxia inducible factor1α(HIF-1α)plays a significant role in the occurrence and development of tumors,as it promotes the formation of intratumoral vessels and plays a key role in their metastasis and invasion.Some studies have reported that caspase-3,which is induced by various factors,is involved in the apoptosis of tumor cells.AIM To investigate the expression of caspase-3 and HIF-1αand their relationship to the prognosis of patients with primary HCC complicated by pathological changes of hemorrhage and necrosis.METHODS A total of 88 patients with HCC complicated by pathological changes of hemorrhage and necrosis who were treated at our hospital from January 2017 to December 2019 were selected.The expression of caspase-3 and HIF-1αin HCC and paracancerous tissues from these patients was assessed.RESULTS The positive expression rate of caspase-3 in HCC tissues was 27.27%,which was significantly lower than that in the paracancerous tissues(P<0.05),while the positive expression rate of HIF-1αwas 72.73%,which was significantly higher than that in the paracancerous tissues(P<0.05).The positive expression rates for caspase-3 in tumor node metastasis(TNM)stage III and lymph node metastasis tissues were 2.78%and 2.50%,respectively,which were significantly lower than those in TNM stage I-II and non-lymph node metastasis tissues(P<0.05).The positive expression rates of HIF-1αin TNM stage III,lymph node metastasis,and portal vein tumor thrombus tissues were 86.11%,87.50%,and 88.00%,respectively,and these values were significantly higher than those in TNM stage I-II,non-lymph node metastasis,and portal vein tumor thrombus tissues(P<0.05).The expression of caspase-3 and HIF-1αin HCC tissues were negatively correlated(rs=−0.426,P<0.05).The median overall survival time of HCC patients was 18.90 mo(95%CI:17.20–19.91).The results of the Cox proportional risk regression model analysis showed that TNM stage,portal vein tumor thrombus,lymph node metastasis,caspase-3 expression,and HIF-1αexpression were the factors influencing patient prognosis(P<0.05).CONCLUSION The expression of caspase-3 decreases and HIF-1αincreases in HCC tissues complicated by pathological changes of hemorrhage and necrosis,and these are related to clinicopathological features and prognosis.展开更多
AIM: To investigate the expression of CD73 and hypoxia-inducible factor-1α (HIF-1α) in human gastric carcinoma, and explore their clinical significance and prognostic value. METHODS: CD73 and HIF-1α expressions wer...AIM: To investigate the expression of CD73 and hypoxia-inducible factor-1α (HIF-1α) in human gastric carcinoma, and explore their clinical significance and prognostic value. METHODS: CD73 and HIF-1α expressions were detected by immunohistochemistry in consecutive sections of tissue samples from 68 gastric carcinoma patients. The peritumor tissues 2 cm away from the tumor were obtained and served as controls. The presence of CD73 and HIF-1α was analyzed by immunohis-tochemistry using the Envision technique. RESULTS: CD73 and HIF-1α expressions in gastric carcinoma were significantly higher than those in gastric mucosal tissues as control (P < 0.001) and showed a close correlation (Spearman r = 0.390, P = 0.001). Overexpression of CD73 was positively correlated with differentiation of tumor (P = 0.000), histopathology (P = 0.041), depth of invasion (P < 0.001), nodal status (P = 0.003), metastasis (P = 0.013), and the American Joint Committee on Cancer (AJCC) stage (P < 0.001). High expression of HIF-1α was positively correlated with tumor diameter (P = 0.031), depth of invasion (P = 0.022), and AJCC stage (P = 0.035). The overall survival rate was low in the patients with high expression of CD73 (P < 0.001). Moreover, CD73+/HIF-1α+ patients had the worst prognosis (P < 0.001). CD73 expression was proven to be an independent predictor for patients with gastric carcinoma by both multivariate Cox regression analysis (P = 0.021) and receiver operating characteristic curves (P = 0.001).CONCLUSION: CD73 expression correlates closely with HIF-1α expression in gastric carcinoma. CD73 could be an independent prognostic indicator for gastric carcinoma.展开更多
AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B(PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lin...AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B(PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lines Eca109 and TE13 were cultured under hypoxia environment, and the protein, m RNA and activity levels of hypoxia inducible factor-1 alpha(HIF-1α), glucose transporter 1, hexokinase-Ⅱ, phosphofructokinase 2 and lactate dehydrogenase-A were determined. Supernatant lactic acid concentrations were also detected. The PI3K/AKT signaling pathway was then inhibited with wortmannin, and the effects of hypoxia on the expression or activities of HIF-1α, associated glycolytic enzymes and lactic acid concentrations were observed. Esophageal carcinoma cells were then transfected with interference plasmid with HIF-1α-targeting si RNA to assess impact of the high expression of HIF-1α on glycolysis.RESULTS: HIF-1α is highly expressed in the esophageal carcinoma cell lines tested, and with decreasing levels of oxygen, the expression of HIF-1α and the associated glycolytic enzymes and the extracellular lactic acid concentration were enhanced in the esophageal carcinoma cell lines Eca109 and TE13. In both normoxia and hypoxic conditions, the level of glycolytic enzymesand the secretion of lactic acid were both reduced by wortmannin. The expression and activities of glycolytic enzymes and the lactic acid concentration in cells were reduced by inhibiting HIF-1α, especially the decreasing level of glycolysis was significant under hypoxic conditions.CONCLUSION: The PI3K/AKT pathway and HIF-1α are both involved in the process of glycolysis in esophageal cancer cells.展开更多
BACKGROUND:Hepatic hypoxia-inducible factor-1(HIF-1) is activated in the progression of hepatocellular carcinoma (HCC).This study aimed to investigate the dynamic alterations of HIF-1αand its gene expression so as to...BACKGROUND:Hepatic hypoxia-inducible factor-1(HIF-1) is activated in the progression of hepatocellular carcinoma (HCC).This study aimed to investigate the dynamic alterations of HIF-1αand its gene expression so as to explore the relationship between HIF-1αexpression and hepatocarcinogenesis at the early stage of HCC. METHODS:A hepatoma model was made with 2-fluorenyl- acetamide(2-FAA)in male Sprague-Dawley rats.Morphological changes of rat hepatocytes were assessed pathologically (HE staining).The dynamic expression of hepatic and circulating HIF-1αwas quantitatively analyzed by ELISA. The gene fragments of hepatic HIF-1αmRNA were amplified by RT-PCR and confirmed by sequencing.The cellular distribution of hepatic HIF-1αexpression was confirmed by immunohistochemistry. RESULTS:Histological examination confirmed granulelike degeneration to atypical hyperplasia and HCC development in rat hepatocytes and progressive increases in the levels of hepatic and circulating HIF-1αand its gene expression during the course.The levels of HIF-1α expression in the liver and blood of rats with hepatoma were significantly higher than those in normal ratsand those with degeneration.Immunohistochemical analysis confirmed the positive expression and hepatocyte distribution of HIF-1αin the development of rat hepatoma. A positive relationship was found between HIF-1α expression in the liver and blood(P<0.01). CONCLUSIONS:The above observations support the hypothesis that the overexpression of HIF-1αand its gene are closely associated with the malignant transformation of hepatocytes and play an important role at the stage of hepatocarcinogenesis.展开更多
Hypoxia(low oxygen level) is an important feature during infections and affects the host defence mechanisms. The host has evolved specific responses to address hypoxia, which are strongly dependent on the activation...Hypoxia(low oxygen level) is an important feature during infections and affects the host defence mechanisms. The host has evolved specific responses to address hypoxia, which are strongly dependent on the activation of hypoxia-inducible factor 1(HIF-1).Hypoxia interferes degradation of HIF-1 alpha subunit(HIF-1α), leading to stabilisation of HIF-1α, heterodimerization with HIF-1 beta subunit(HIF-1β) and subsequent activation of HIF-1 pathway. Apical periodontitis(periapical lesion) is a consequence of endodontic infection and ultimately results in destruction of tooth-supporting tissue, including alveolar bone. Thus far, the role of HIF-1 in periapical lesions has not been systematically examined. In the present study, we determined the role of HIF-1 in a wellcharacterised mouse periapical lesion model using two HIF-1α-activating strategies, dimethyloxalylglycine(DMOG) and adenovirusinduced constitutively active HIF-1α(CA-HIF1 A). Both DMOG and CA-HIF1 A attenuated periapical inflammation and tissue destruction. The attenuation in vivo was associated with downregulation of nuclear factor-κappa B(NF-κB) and osteoclastic gene expressions. These two agents also suppressed NF-κB activation and subsequent production of proinflammatory cytokines by macrophages. Furthermore, activation of HIF-1α by DMOG specifically suppressed lipopolysaccharide-stimulated macrophage differentiation into M1 cells, increasing the ratio of M2 macrophages against M1 cells. Taken together, our data indicated that activation of HIF-1 plays a protective role in the development of apical periodontitis via downregulation of NF-κB, proinflammatory cytokines, M1 macrophages and osteoclastogenesis.展开更多
The Hypoxia Inducible factor (HIF) pathway is known to be constitutionally active in various cancers and is the dominant pathway in some cancers such as VHL mutant clear cell Renal cell carcinoma. HIF-1α and HIF-2α ...The Hypoxia Inducible factor (HIF) pathway is known to be constitutionally active in various cancers and is the dominant pathway in some cancers such as VHL mutant clear cell Renal cell carcinoma. HIF-1α and HIF-2α overexpression is known to be important for tumor cell proliferation, maintenance of stemness and angiogenesis. There has been growing interest in therapeutic strategies targeting the HIF pathway over the last decade. We review in this section the role of hypoxia inducible factor pathway in carcinogenesis, its crosstalk with other pathways and potential cancer therapeutic strategies targeting the HIF pathway, its upstream regulators and downstream signaling.展开更多
AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion. METHODS: in this study, we correlated hypoxia induciblefactor(Hi F)-1α expression to the p...AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion. METHODS: in this study, we correlated hypoxia induciblefactor(Hi F)-1α expression to the perfusion temperature and the hepatic oxygen uptake in a model of isolated perfused rat liver. Livers from Wistar rats were perfused for 6 h with an oxygenated medium at 10, 20, 30 and 37 ℃. Oxygen uptake was measured by an oxygen probe; lactate dehydrogenase activity, lactate release and glycogen were measured spectrophotometrically; bile flow was gravitationally determined; p H of the perfusate was also evaluated; Hi F-1α m RNA and protein expression were analyzed by real time-polymerase chain reaction and ELi SA, respectively. RESULTS: Livers perfused at 10 and 20 ℃ showed no difference in lactate dehydrogenase release after 6 h of perfusion(0.96 ± 0.23 vs 0.93 ± 0.09 m U/min per g) and had lower hepatic damage as compared to 30 and 37 ℃(5.63 ± 0.76 vs 527.69 ± 45.27 m U/min per g, respectively, P s < 0.01). After 6 h, tissue ATP was significantly higher in livers perfused at 10 and 20 ℃than in livers perfused at 30 and 37 ℃(0.89 ± 0.06 and 1.16 ± 0.05 vs 0.57 ± 0.09 and 0.33 ± 0.08 nmol/mg, respectively, P s < 0.01). No sign of hypoxia was observed at 10 and 20 ℃, as highlighted by low lactate release respect to livers perfused at 30 and 37 ℃(121.4 ± 12.6 and 146.3 ± 7.3 vs 281.8 ± 45.3 and 1094.5 ± 71.7 nmol/m L, respectively, P s < 0.02), and low relative Hi F-1α m RNA(0.40 ± 0.08 and 0.20 ± 0.03 vs 0.60 ± 0.20 and 1.47 ± 0.30, respectively, P s < 0.05) and protein(3.72 ± 0.16 and 3.65 ± 0.06 vs 4.43 ± 0.41 and 6.44 ± 0.82, respectively, P s < 0.05) expression.CONCLUSION: Livers perfused at 10 and 20 ℃ show no sign of liver injury or anaerobiosis, in contrast to livers perfused at 30 and 37 ℃.展开更多
AIM:To study the effects of hypoxia-inducible factor1α(HIF-1α) silencing on the proliferation of hypoxic CBRH-7919 rat hepatoma cells.METHODS:The CBRH-7919 rat hepatoma cell line was used in this study and the hypox...AIM:To study the effects of hypoxia-inducible factor1α(HIF-1α) silencing on the proliferation of hypoxic CBRH-7919 rat hepatoma cells.METHODS:The CBRH-7919 rat hepatoma cell line was used in this study and the hypoxic model was constructed using CoCl2.The HIF-1α-specific RNAi sequences were designed according to the gene coding sequence of rat HIF-1α obtained from GeneBank.The secondary structure of the HIF-1α gene sequence was analyzed using RNA draw software.The small interfering RNA(siRNA) transfection mixture was produced by mixing the siRNA and Lipofectamine2000TM,and transfected into the hypoxic hepatoma cells.Real time reverse transcription-polymerase chain reaction(RTPCR) and Western blotting assay were used to detect the expression levels of mRNA and protein.HIF-1α and vascular endothelial growth factor(VEGF) mRNA was determined using real time RT-PCR;the protein expression levels of AKT,p-AKT,p21 and cyclinD1 were determined using Western blotting.The proliferation of hepatoma cells was observed using the methyl thiazolyl tetrazolium(MTT) assay and the bromodeoxyuridine(BrdU) incorporation cell proliferation assay.RESULTS:Under induced hypoxia,the viability of the hepatoma cells reached a minimum at 800 μmol/L CoCl2;the viability of the cells was relatively high at CoCl2 concentrations between 100 μmol/L and 200 μmol/L.Under hypoxia,the mRNA and protein expression levels of HIF-1α and VEGF were significantly higher than that of hepatoma cells that were cultured in normaxia.HIF-1α-specific RNAi sequences were successfully transfected into hepatoma cells.The transfection of specific siRNAs significantly inhibited the mRNA and protein expression levels of HIF-1α and VEGF,along with the protein expression levels of p-AKT and cyclinD1;the protein expression of p21 was significantly increased,and there was no significant difference in the expression of AKT.The MTT assay showed that the amount of hepatoma cells in S phase in the siRNA transfection group was obviously smaller than that in the control group;in the siRNA transfection group,the amount of hepatoma cells in G1 phase was more than that in the control group.The BrdU incorporation assay showed that the number of BrdU positive hepatoma cells in the siRNA transfection group was less than that in the control group.The data of the MTT assay and BrdU incorporation assay suggested that HIF-1α silencing using siRNAs significantly inhibited the proliferation of hepatoma cells.CONCLUSION:Hypoxia increases the expression of HIF-1α,and HIF-1α silencing significantly inhibits the proliferation of hypoxic CBRH-7919 rat hepatoma cells.展开更多
BACKGROUND Gastric cancer(GC) is one of the main causes of cancer mortality worldwide.Recent studies on tumor microenvironments have shown that tumor metabolism exerts a vital role in cancer progression.AIM To investi...BACKGROUND Gastric cancer(GC) is one of the main causes of cancer mortality worldwide.Recent studies on tumor microenvironments have shown that tumor metabolism exerts a vital role in cancer progression.AIM To investigate whether lysyl oxidase(LOX) and hypoxia-inducible factor 1α(HIF1α) are prognostic and predictive biomarkers in GC.METHODS A total of 80 tissue and blood samples were collected from 140 patients admitted to our hospital between August 2008 and March 2012. Immunohistochemical staining was performed to measure the expression of LOX and HIF1α in tumor and adjacent tissues collected from patients with GC. Real-time quantitative reverse transcription polymerase chain reaction(qRT-PCR) analysis was used to detect the mRNA expression levels of LOX and HIF1α in patients with GC. In addition, single-factor analysis was applied to analyze the relationship between LOX, HIF1α and prognosis of GC.RESULTS Immunohistochemical staining suggested that the expression levels of LOX and HIF1α increased in tumor tissues from patients with GC. QRT-PCR analysis indicated that mRNA expression of LOX and HIF1α was also upregulated in tumor tissues, which was in accordance with the above results. We also detected expression of these two genes in blood samples. The expression level of LOX and HIF1α was higher in patients with GC than in healthy controls. Additional analysis showed that the expression level of LOX and HIF1α was related to the clinicopathological characteristics of GC. Expression of LOX and HIF1α increased with the number of lymph node metastases, deeper infiltration depth and later tumor–node–metastasis stages. Single-factor analysis showed that high expression of LOX and HIF1α led to poor prognosis of patients with GC.CONCLUSION LOX and HIF1α can be used as prognostic and predictive biomarkers for GC.展开更多
Objective:To evaluate whether hypoxia inducible factor(HIF-1α) targeting pharmacological drugs,echinomycin,resveratrol and CdCl_2 which inhibit HIF-1α stimulation,and mimosine,which enhances the stability of HIF-1α...Objective:To evaluate whether hypoxia inducible factor(HIF-1α) targeting pharmacological drugs,echinomycin,resveratrol and CdCl_2 which inhibit HIF-1α stimulation,and mimosine,which enhances the stability of HIF-1α present antileishmanial properties.Methods:The leishmanicidal effect of drugs was evaluated in mouse macrophages and Balb/c mouse model for cutaneous leishmaniosis.Results:Resveratrol and CdCl_2 reduced the parasite load [IC50,(27.3±2.25) μM and(24.8±0.95) μM,respectively].The IC50 value of echinomycin was(22.7±7.36) nM and mimosine did not alter the parasite load in primary macrophages.The macrophage viability IC50 values for resveratrol,echinomycin and CdCl_2 and mimosine were >40 μM,>100 nM,> 200 μM and>2 000 μM,respectively.In vivo no differences between cutaneous lesions from control,resveratrol-and echinomycin-treated Balb/c mice were detected.Conclusions:Resveratrol,echinomycin and CdCl_2 reduce parasite survival in vitro.The HIF-1α targeting pharmacological drugs require further study to more fully determine their anti-Leishmania potential and their role in therapeutic strategies.展开更多
AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model...AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model and we evaluated HIF-1αin steatotic and non-steatotic livers preserved for 24 h at 4℃in University of Wisconsin and IGL-1 solutions,and then subjected to 2 h of normothermic reperfusion.After normoxic reperfusion,liver enzymes,bile production,bromosulfophthalein clearance,as well as HIF-1αand NO[endothelial NO synthase(eNOS)activity and nitrites/nitrates]were also measured.Other factors associated with the higher susceptibility of steatotic livers to IRI,such as mitochondrial damage and vascular resistance were evaluated. RESULTS:A significant increase in HIF-1αwas found in steatotic and non-steatotic livers preserved in IGL-1 after cold storage.Livers preserved in IGL-1 showed a significant attenuation of liver injury and improvement in liver function parameters.These benefits were enhanced by the addition of trimetazidine(an antiischemic drug),which induces NO and eNOS activation, to IGL-1 solution.In normoxic reperfusion,the presence of NO favors HIF-1αaccumulation,promoting also the activation of other cytoprotective genes,such as hemeoxygenase-1. CONCLUSION:We found evidence for the role of the HIF-1α/NO system in fatty liver preservation,especially when IGL-1 solution is used.展开更多
BACKGROUND The occurrence and development of acute liver failure(ALF)is closely related to a series of inflammatory reactions,such as the production of reactive oxygen species(ROS).Hypoxia inducible factor 1α(HIF-1α...BACKGROUND The occurrence and development of acute liver failure(ALF)is closely related to a series of inflammatory reactions,such as the production of reactive oxygen species(ROS).Hypoxia inducible factor 1α(HIF-1α)is a key factor that regulates oxygen homeostasis and redox,and the stability of HIF-1αis related to the ROS level regulated by Sirtuin(Sirt)family.The activation of Sirt1 will lead to a powerful antioxidant defense system and therapeutic effects in liver disease.However,little is known about the relationship between HIF-1αand Sirt1 in the process of ALF and the molecular mechanism.AIM To investigate whether HIF-1αmay be a target of Sirt1 deacetylation and what the effects on ALF are.METHODS Mice were administrated lipopolysaccharide(LPS)/D-gal and exposed to hypoxic conditions as animal model,and resveratrol was used as an activator of Sirt1.The cellular model was established with L02 cells stimulated by LPS.N-acetyl-Lcysteine was used to remove ROS,and the expression of Sirt1 was inhibited by nicotinamide.Western blotting was used to detect Sirt1 and HIF-1αactivity and related protein expression.The possible signaling pathways involved were analyzed by immunofluorescent staining,co-immunoprecipitation,dihydroethidium staining,and Western blotting.RESULTS Compared with mice stimulated with LPS alone,the expression of Sirt1 decreased,the level of HIF-1αacetylation increased in hypoxic mice,and the levels of carbonic anhydrase 9 and Bcl-2-adenovirus E1B interacting protein 3 increased significantly,which was regulated by HIF-1α,indicating an increase of HIF-1αactivity.Under hypoxia,the down-regulation of Sirt1 activated and acetylated HIF-1αin L02 cells.The inhibition of Sirt1 significantly aggravated this effect and the massive production of ROS.The regulation of ROS was partly through peroxisome proliferatoractivated receptor alpha or AMP-activated protein kinase.Resveratrol,a Sirt1 activator,effectively relieved ALF aggravated by hypoxia,the production of ROS,and cell apoptosis.It also induced the deacetylation of HIF-1αand inhibited the activity of HIF-1α.CONCLUSION Sirt1 may have a protective effect on ALF by inducing HIF-1α deacetylation to reduce ROS.展开更多
AIM: To investigate the roles and interactions of mut T homolog(MTH)-1 and hypoxia-inducible factor(HIF)-1α in human colorectal cancer(CRC).METHODS: The expression and distribution of HIF-1α and MTH-1 proteins were ...AIM: To investigate the roles and interactions of mut T homolog(MTH)-1 and hypoxia-inducible factor(HIF)-1α in human colorectal cancer(CRC).METHODS: The expression and distribution of HIF-1α and MTH-1 proteins were detected in human CRC tissues by immunohistochemistry and quantitative realtime polymerase chain reaction(q RT-PCR). SW480 and HT-29 cells were exposed to normoxia or hypoxia. Protein and m RNA levels of HIF-1α and MTH-1 were analyzed by western blotting and q RT-PCR, respectively. In order to determine the effect of HIF-1α on the expression of MTH-1 and the amount of 8-oxodeoxyguanosine triphosphate(d GTP) in SW480 and HT-29 cells, HIF-1α was silenced with small interfering RNA(si RNA). Growth studies were conducted on cells with HIF-1α inhibition using a xenograft tumor model. Finally, MTH-1 protein was detected by western blotting in vivo.RESULTS: High MTH-1 m RNA expression was detected in 64.2% of cases(54/84), and this was significantly correlated with tumor stage(P = 0.023) and size(P = 0.043). HIF-1α protein expression was correlated significantly with MTH-1 expression(R = 0.640; P < 0.01) in human CRC tissues. Hypoxic stress induced m RNA and protein expression of MTH-1 in SW480 and HT-29 cells. Inhibition of HIF-1α by si RNA decreased the expression of MTH-1 and led to the accumulation of 8-oxo-d GTP in SW480 and HT-29 cells. In the in vivo xenograft tumor model, expression of MTH-1 was decreased in the HIF-1α si RNA group, and the tumor volume was much smaller than that in the mock si RNA group.CONCLUSION: MTH-1 expression in CRC cells was upregulated via HIF-1α in response to hypoxic stress, emphasizing the crucial role of HIF-1α-induced MTH-1 in tumor growth.展开更多
Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relatio...Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible factor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chronological changes of neural stem cells by 5-bromo-2′-deoxyuridine(BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1α immunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-infarct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3–7 days. Nestin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neurons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and vascular endothelial growth factor after ischemia made up the microenvironment to increase the neuronal plasticity of activated endogenous neural stem cells. Moreover, neural precursor cells after large-scale cortical injury could be recruited from the cortex nearby infarct core and subventricular zone.展开更多
文摘DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.
文摘Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin (EPO) in vivo and in vitro. Methods Rat model of cerebral ischemia was established by middle cerebral artery occlusion with or without DFO administration. Infarct size was examined by TTC staining, and the neurological severity score was evaluated according to published method. Cortical neurons were cultured under ischemia stress which was mimicked by oxygen-glucose deprivation (OGD), and the neuron damage was assessed by MTT assay. Immunofluorescent staining was employed to detect the expressions of HIF-1 and EPO. Results The protective effect induced by DFO (decreasing the infarction volume and ameliorating the neurological function) appeared at 2 d after administration ofDFO (post-DFO), lasted until 7 d and disappeared at 14 d (P 〈 0.05); the most effective action was observed at 3 d post-DFO. DFO induced tolerance of cultured neurons against OGD: neuronal viability was increased 23%, 34%, 40%, 48% and 56% at 8 h, 12 h, 24 h, 36 h, and 48 h, respectively, post-DFO (P 〈 0.05). Immunofluorescent staining found that HIF-1 α and EPO were upregulated in the neurons of rat brain at 3 d and 7 d post-DFO; increase of HIF-1 α and EPO appeared in cultured cortex neurons at 36 h and 48 h post-DFO. Conclusion DFO induced tolerance against focal cerebral ischemia in rats, and exerted protective effect on OGD cultured cortical neurons. DFO significant induced the expression of HIF- 1 α and EPO both in vivo and in vitro. DFO preconditioning can protect against cerebral ischemia, which may be associated with the synthesis of HIF- 1 α and EPO.
文摘The role of the hypoxia-inducible factor(HIF)subunits 1α and 2α in response to hypoxia is well established in lungepithelial cells,whereas little is known about HIF-3α with respect to transcriptional and translational regulation by hy-poxia.HIF-3α and HIF-1α are two similar but distinct basic helix-loop-helix-PAS proteins,which have been postulatedto activate hypoxia responsive genes in response to hypoxia.Here,we used quantitative real time RT-PCR and immu-noblotting to determine the activation of HIF-3α vs.HIF-1α by hypoxia.HIF-3α was strongly induced by hypoxia(1%O_2)both at the level of protein and mRNA due to an increase in protein stability and transcriptional activation,whereasHIF-1α protein and mRNA levels enhanced transiently and then decreased because of a reduction in its mRNA stabilityin A549 cells,as measured on mRNA and protein levels.Interestingly,HIF-3α and HIF-1α exhibited strikingly similarresponses to a variety of activating or inhibitory pharmacological agents.These results demonstrate that HIF-3α is ex-pressed abundantly in lung epithelial cells,and that the transcriptional induction of HIF-3α plays an important role in theresponse to hypoxia in vitro.Our findings suggest that HIF-3α,as a member of the HIF system,is complementary ratherthan redundant to HIF-1α induction in protection against hypoxic damage in alveolar epithelial cells.
基金supported by the Scientific Research Program of Health Department of Hubei Province,China(No.JX6B04)
文摘Summary: In order to investigate the expression of nerve growth factor (NGF) and hypoxia inducible factor-1α (HIF-1α) and its correlation with angiogenesis in non-small cell lung cancer (NSCLC), paraffin-embedded tissue blocks from 20 patients with NSCLC were examined. Twenty corresponding para-cancerous lung tissue specimens were obtained to serve as a control. The expression of NGF, HIF-1α, and vascular endothelial growth factor (VEGF) in the NSCLC tissues was detected by using immunohistochemistry. The microvascular density (MVD) was determined by CD31 staining. The resuits showed that the expression levels ofNGF, HIF-1α and VEGF in the NSCLC tissues were remarkably higher than those in the para-cancerous lung tissues (P〈0.05). There was significant difference in the MVD between the NSCLC tissues (9.19±1.43) and para-cancerous lung tissues (2.23±1.19) (P〈0.05). There were positive correlations between NGF and VEGF, between HIF-1α and VEGF, and between NGF and HIF-1α in NSCLC tissues, with the spearman correlation coefficient being 0.588, 0.519 and 0.588, respectively. In NSCLC tissues, the MVD had a positive correlation with the three factors (P〈0.05). Theses results suggest that NGF and HIF-1α are synergically involved in the angiogenesis of NSCLC.
文摘Hepatocellular carcinoma(HCC) is one of the most commonly diagnosed and deadly cancers worldwide; its incidence has been rising in the United States due to the increase in hepatitis C associated cirrhosis and the growing epidemic of obesity. There have been no effective therapeutic options in the advanced disease setting beyond sorafenib, a multi-targeted tyrosine kinase inhibitor that showed significant survival benefit. Because of this, there is an urgent need to search for novel pathways in sorafenib experienced patients. This review will focus on the role of hypoxia and hypoxiainducible factor alpha(HIF-1α) in cancer development, specifically in HCC. We will discuss the biology of HIF-1α, the pathways with which it interacts, and the function of HIF-1α in HCC. Furthermore, we will review studies highlighting the relevance of HIF-1α in the clinical setting, as well as the pre-clinical data supporting its further investigation. Finally, we will conclude with a discussion of the potential role of a HIF-1α m RNA antagonist for the treatment of HCC, and hypothesize the ways in which such an inhibitor may be best utilized in the management of advanced HCC. Hypoxia plays a significant role in the development of HCC. HIF-1α is a key transcription factor involved in the hypoxic response of cancer cells. It activates transcription of genes responsible for angiogenesis, glucose metabolism, proliferation, invasion and metastasis in HCC. Its involvement in multiple, essential tumor pathways makes it an attractive potential therapeutic target in HCC.
基金This project was supported by a grant from the National Natural Science Foundation of China (No. 30500224)
文摘Summary: To study the role and mechanisms of hypoxia-inducible factor-lalpha (HIF-1α on the growth and tumorigenicity of lung cancer cells A549, the antisense oligonucleotide of HIF-1α was transfected to A549 cells. The effect of the antisense oligonucleotide on tumor growth in vitro and in vivo was evaluated by the growth rate suppression of A549 cells and subcutaneous implanted tumor in nude mice, and the effect on tumorigenicity was evaluated by the expression inhibition of angiogenic factors, the microvessel density (MVD)and vascular endothelial growth factor (VEGF) protein expression which were detected by immohistochemistry and western blot respectively. This study revealed that in vitro the growth rate of antisense oligonucleotide group was significantly decreased as compared with that of control group, sense oligonucleotide group and false-sense oligonucleotide group; in vivo the weight of implanted tumors in nude mice of antisense oligonucleotide group was 1.51±0.40 g, which was significantly lower than that of control group (2.79±0.33 g), sense oligonucleotide group (2.81±0.45g) and false-sense oligonucleotide group (2.89±0.39 g) and the inhibitory rate was 47 %. Both MVD and VEGF protein expression were significantly inhibited in antisense oligonucleotide group compared with those in other groups. These results indicated that antisense oligonucleotide of HIF-1α could inhibit lung cancer cells A549 growth in vitro and in vivo, and the mechanism may be due to the inhibition of vascular growth and VEGF protein expression.
基金Supported by Research Project for Jiangxi Educational Department,No.180086.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a malignant tumor that occurs in the liver.Its onset is latent,and it shows high heterogeneity and can readily experience intrahepatic metastasis or systemic metastasis,which seriously affects patients’quality of life.Numerous studies have shown that hypoxia inducible factor1α(HIF-1α)plays a significant role in the occurrence and development of tumors,as it promotes the formation of intratumoral vessels and plays a key role in their metastasis and invasion.Some studies have reported that caspase-3,which is induced by various factors,is involved in the apoptosis of tumor cells.AIM To investigate the expression of caspase-3 and HIF-1αand their relationship to the prognosis of patients with primary HCC complicated by pathological changes of hemorrhage and necrosis.METHODS A total of 88 patients with HCC complicated by pathological changes of hemorrhage and necrosis who were treated at our hospital from January 2017 to December 2019 were selected.The expression of caspase-3 and HIF-1αin HCC and paracancerous tissues from these patients was assessed.RESULTS The positive expression rate of caspase-3 in HCC tissues was 27.27%,which was significantly lower than that in the paracancerous tissues(P<0.05),while the positive expression rate of HIF-1αwas 72.73%,which was significantly higher than that in the paracancerous tissues(P<0.05).The positive expression rates for caspase-3 in tumor node metastasis(TNM)stage III and lymph node metastasis tissues were 2.78%and 2.50%,respectively,which were significantly lower than those in TNM stage I-II and non-lymph node metastasis tissues(P<0.05).The positive expression rates of HIF-1αin TNM stage III,lymph node metastasis,and portal vein tumor thrombus tissues were 86.11%,87.50%,and 88.00%,respectively,and these values were significantly higher than those in TNM stage I-II,non-lymph node metastasis,and portal vein tumor thrombus tissues(P<0.05).The expression of caspase-3 and HIF-1αin HCC tissues were negatively correlated(rs=−0.426,P<0.05).The median overall survival time of HCC patients was 18.90 mo(95%CI:17.20–19.91).The results of the Cox proportional risk regression model analysis showed that TNM stage,portal vein tumor thrombus,lymph node metastasis,caspase-3 expression,and HIF-1αexpression were the factors influencing patient prognosis(P<0.05).CONCLUSION The expression of caspase-3 decreases and HIF-1αincreases in HCC tissues complicated by pathological changes of hemorrhage and necrosis,and these are related to clinicopathological features and prognosis.
基金Supported by National Natural Science Foundation of China,No. 81071806
文摘AIM: To investigate the expression of CD73 and hypoxia-inducible factor-1α (HIF-1α) in human gastric carcinoma, and explore their clinical significance and prognostic value. METHODS: CD73 and HIF-1α expressions were detected by immunohistochemistry in consecutive sections of tissue samples from 68 gastric carcinoma patients. The peritumor tissues 2 cm away from the tumor were obtained and served as controls. The presence of CD73 and HIF-1α was analyzed by immunohis-tochemistry using the Envision technique. RESULTS: CD73 and HIF-1α expressions in gastric carcinoma were significantly higher than those in gastric mucosal tissues as control (P < 0.001) and showed a close correlation (Spearman r = 0.390, P = 0.001). Overexpression of CD73 was positively correlated with differentiation of tumor (P = 0.000), histopathology (P = 0.041), depth of invasion (P < 0.001), nodal status (P = 0.003), metastasis (P = 0.013), and the American Joint Committee on Cancer (AJCC) stage (P < 0.001). High expression of HIF-1α was positively correlated with tumor diameter (P = 0.031), depth of invasion (P = 0.022), and AJCC stage (P = 0.035). The overall survival rate was low in the patients with high expression of CD73 (P < 0.001). Moreover, CD73+/HIF-1α+ patients had the worst prognosis (P < 0.001). CD73 expression was proven to be an independent predictor for patients with gastric carcinoma by both multivariate Cox regression analysis (P = 0.021) and receiver operating characteristic curves (P = 0.001).CONCLUSION: CD73 expression correlates closely with HIF-1α expression in gastric carcinoma. CD73 could be an independent prognostic indicator for gastric carcinoma.
基金Supported by the National Natural Science Foundation of China,No.30800511
文摘AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B(PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lines Eca109 and TE13 were cultured under hypoxia environment, and the protein, m RNA and activity levels of hypoxia inducible factor-1 alpha(HIF-1α), glucose transporter 1, hexokinase-Ⅱ, phosphofructokinase 2 and lactate dehydrogenase-A were determined. Supernatant lactic acid concentrations were also detected. The PI3K/AKT signaling pathway was then inhibited with wortmannin, and the effects of hypoxia on the expression or activities of HIF-1α, associated glycolytic enzymes and lactic acid concentrations were observed. Esophageal carcinoma cells were then transfected with interference plasmid with HIF-1α-targeting si RNA to assess impact of the high expression of HIF-1α on glycolysis.RESULTS: HIF-1α is highly expressed in the esophageal carcinoma cell lines tested, and with decreasing levels of oxygen, the expression of HIF-1α and the associated glycolytic enzymes and the extracellular lactic acid concentration were enhanced in the esophageal carcinoma cell lines Eca109 and TE13. In both normoxia and hypoxic conditions, the level of glycolytic enzymesand the secretion of lactic acid were both reduced by wortmannin. The expression and activities of glycolytic enzymes and the lactic acid concentration in cells were reduced by inhibiting HIF-1α, especially the decreasing level of glycolysis was significant under hypoxic conditions.CONCLUSION: The PI3K/AKT pathway and HIF-1α are both involved in the process of glycolysis in esophageal cancer cells.
基金supported by grants-in-aid from the 333 Project(No.2007099)Project of the Health Department,Jiangsu Province,China(H200523)
文摘BACKGROUND:Hepatic hypoxia-inducible factor-1(HIF-1) is activated in the progression of hepatocellular carcinoma (HCC).This study aimed to investigate the dynamic alterations of HIF-1αand its gene expression so as to explore the relationship between HIF-1αexpression and hepatocarcinogenesis at the early stage of HCC. METHODS:A hepatoma model was made with 2-fluorenyl- acetamide(2-FAA)in male Sprague-Dawley rats.Morphological changes of rat hepatocytes were assessed pathologically (HE staining).The dynamic expression of hepatic and circulating HIF-1αwas quantitatively analyzed by ELISA. The gene fragments of hepatic HIF-1αmRNA were amplified by RT-PCR and confirmed by sequencing.The cellular distribution of hepatic HIF-1αexpression was confirmed by immunohistochemistry. RESULTS:Histological examination confirmed granulelike degeneration to atypical hyperplasia and HCC development in rat hepatocytes and progressive increases in the levels of hepatic and circulating HIF-1αand its gene expression during the course.The levels of HIF-1α expression in the liver and blood of rats with hepatoma were significantly higher than those in normal ratsand those with degeneration.Immunohistochemical analysis confirmed the positive expression and hepatocyte distribution of HIF-1αin the development of rat hepatoma. A positive relationship was found between HIF-1α expression in the liver and blood(P<0.01). CONCLUSIONS:The above observations support the hypothesis that the overexpression of HIF-1αand its gene are closely associated with the malignant transformation of hepatocytes and play an important role at the stage of hepatocarcinogenesis.
基金supported by the National Institute of Dental and Craniofacial Research(NIDCR)the National Center for Research Resources(NCRR)of the National Institutes of Health(NIH)under award numbers R21DE023178,R01DE024796,and S10RR027553
文摘Hypoxia(low oxygen level) is an important feature during infections and affects the host defence mechanisms. The host has evolved specific responses to address hypoxia, which are strongly dependent on the activation of hypoxia-inducible factor 1(HIF-1).Hypoxia interferes degradation of HIF-1 alpha subunit(HIF-1α), leading to stabilisation of HIF-1α, heterodimerization with HIF-1 beta subunit(HIF-1β) and subsequent activation of HIF-1 pathway. Apical periodontitis(periapical lesion) is a consequence of endodontic infection and ultimately results in destruction of tooth-supporting tissue, including alveolar bone. Thus far, the role of HIF-1 in periapical lesions has not been systematically examined. In the present study, we determined the role of HIF-1 in a wellcharacterised mouse periapical lesion model using two HIF-1α-activating strategies, dimethyloxalylglycine(DMOG) and adenovirusinduced constitutively active HIF-1α(CA-HIF1 A). Both DMOG and CA-HIF1 A attenuated periapical inflammation and tissue destruction. The attenuation in vivo was associated with downregulation of nuclear factor-κappa B(NF-κB) and osteoclastic gene expressions. These two agents also suppressed NF-κB activation and subsequent production of proinflammatory cytokines by macrophages. Furthermore, activation of HIF-1α by DMOG specifically suppressed lipopolysaccharide-stimulated macrophage differentiation into M1 cells, increasing the ratio of M2 macrophages against M1 cells. Taken together, our data indicated that activation of HIF-1 plays a protective role in the development of apical periodontitis via downregulation of NF-κB, proinflammatory cytokines, M1 macrophages and osteoclastogenesis.
文摘The Hypoxia Inducible factor (HIF) pathway is known to be constitutionally active in various cancers and is the dominant pathway in some cancers such as VHL mutant clear cell Renal cell carcinoma. HIF-1α and HIF-2α overexpression is known to be important for tumor cell proliferation, maintenance of stemness and angiogenesis. There has been growing interest in therapeutic strategies targeting the HIF pathway over the last decade. We review in this section the role of hypoxia inducible factor pathway in carcinogenesis, its crosstalk with other pathways and potential cancer therapeutic strategies targeting the HIF pathway, its upstream regulators and downstream signaling.
基金Supported by Grant from Fondazione Cariplo,No.2011-0439
文摘AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion. METHODS: in this study, we correlated hypoxia induciblefactor(Hi F)-1α expression to the perfusion temperature and the hepatic oxygen uptake in a model of isolated perfused rat liver. Livers from Wistar rats were perfused for 6 h with an oxygenated medium at 10, 20, 30 and 37 ℃. Oxygen uptake was measured by an oxygen probe; lactate dehydrogenase activity, lactate release and glycogen were measured spectrophotometrically; bile flow was gravitationally determined; p H of the perfusate was also evaluated; Hi F-1α m RNA and protein expression were analyzed by real time-polymerase chain reaction and ELi SA, respectively. RESULTS: Livers perfused at 10 and 20 ℃ showed no difference in lactate dehydrogenase release after 6 h of perfusion(0.96 ± 0.23 vs 0.93 ± 0.09 m U/min per g) and had lower hepatic damage as compared to 30 and 37 ℃(5.63 ± 0.76 vs 527.69 ± 45.27 m U/min per g, respectively, P s < 0.01). After 6 h, tissue ATP was significantly higher in livers perfused at 10 and 20 ℃than in livers perfused at 30 and 37 ℃(0.89 ± 0.06 and 1.16 ± 0.05 vs 0.57 ± 0.09 and 0.33 ± 0.08 nmol/mg, respectively, P s < 0.01). No sign of hypoxia was observed at 10 and 20 ℃, as highlighted by low lactate release respect to livers perfused at 30 and 37 ℃(121.4 ± 12.6 and 146.3 ± 7.3 vs 281.8 ± 45.3 and 1094.5 ± 71.7 nmol/m L, respectively, P s < 0.02), and low relative Hi F-1α m RNA(0.40 ± 0.08 and 0.20 ± 0.03 vs 0.60 ± 0.20 and 1.47 ± 0.30, respectively, P s < 0.05) and protein(3.72 ± 0.16 and 3.65 ± 0.06 vs 4.43 ± 0.41 and 6.44 ± 0.82, respectively, P s < 0.05) expression.CONCLUSION: Livers perfused at 10 and 20 ℃ show no sign of liver injury or anaerobiosis, in contrast to livers perfused at 30 and 37 ℃.
基金Supported by Natural Science Foundation of Guangdong Province People’s Republic of China,No. 10151008901000182
文摘AIM:To study the effects of hypoxia-inducible factor1α(HIF-1α) silencing on the proliferation of hypoxic CBRH-7919 rat hepatoma cells.METHODS:The CBRH-7919 rat hepatoma cell line was used in this study and the hypoxic model was constructed using CoCl2.The HIF-1α-specific RNAi sequences were designed according to the gene coding sequence of rat HIF-1α obtained from GeneBank.The secondary structure of the HIF-1α gene sequence was analyzed using RNA draw software.The small interfering RNA(siRNA) transfection mixture was produced by mixing the siRNA and Lipofectamine2000TM,and transfected into the hypoxic hepatoma cells.Real time reverse transcription-polymerase chain reaction(RTPCR) and Western blotting assay were used to detect the expression levels of mRNA and protein.HIF-1α and vascular endothelial growth factor(VEGF) mRNA was determined using real time RT-PCR;the protein expression levels of AKT,p-AKT,p21 and cyclinD1 were determined using Western blotting.The proliferation of hepatoma cells was observed using the methyl thiazolyl tetrazolium(MTT) assay and the bromodeoxyuridine(BrdU) incorporation cell proliferation assay.RESULTS:Under induced hypoxia,the viability of the hepatoma cells reached a minimum at 800 μmol/L CoCl2;the viability of the cells was relatively high at CoCl2 concentrations between 100 μmol/L and 200 μmol/L.Under hypoxia,the mRNA and protein expression levels of HIF-1α and VEGF were significantly higher than that of hepatoma cells that were cultured in normaxia.HIF-1α-specific RNAi sequences were successfully transfected into hepatoma cells.The transfection of specific siRNAs significantly inhibited the mRNA and protein expression levels of HIF-1α and VEGF,along with the protein expression levels of p-AKT and cyclinD1;the protein expression of p21 was significantly increased,and there was no significant difference in the expression of AKT.The MTT assay showed that the amount of hepatoma cells in S phase in the siRNA transfection group was obviously smaller than that in the control group;in the siRNA transfection group,the amount of hepatoma cells in G1 phase was more than that in the control group.The BrdU incorporation assay showed that the number of BrdU positive hepatoma cells in the siRNA transfection group was less than that in the control group.The data of the MTT assay and BrdU incorporation assay suggested that HIF-1α silencing using siRNAs significantly inhibited the proliferation of hepatoma cells.CONCLUSION:Hypoxia increases the expression of HIF-1α,and HIF-1α silencing significantly inhibits the proliferation of hypoxic CBRH-7919 rat hepatoma cells.
基金Supported by the grants from the Military Medical Science and Technology Youth Training Program Project(16QNP146)
文摘BACKGROUND Gastric cancer(GC) is one of the main causes of cancer mortality worldwide.Recent studies on tumor microenvironments have shown that tumor metabolism exerts a vital role in cancer progression.AIM To investigate whether lysyl oxidase(LOX) and hypoxia-inducible factor 1α(HIF1α) are prognostic and predictive biomarkers in GC.METHODS A total of 80 tissue and blood samples were collected from 140 patients admitted to our hospital between August 2008 and March 2012. Immunohistochemical staining was performed to measure the expression of LOX and HIF1α in tumor and adjacent tissues collected from patients with GC. Real-time quantitative reverse transcription polymerase chain reaction(qRT-PCR) analysis was used to detect the mRNA expression levels of LOX and HIF1α in patients with GC. In addition, single-factor analysis was applied to analyze the relationship between LOX, HIF1α and prognosis of GC.RESULTS Immunohistochemical staining suggested that the expression levels of LOX and HIF1α increased in tumor tissues from patients with GC. QRT-PCR analysis indicated that mRNA expression of LOX and HIF1α was also upregulated in tumor tissues, which was in accordance with the above results. We also detected expression of these two genes in blood samples. The expression level of LOX and HIF1α was higher in patients with GC than in healthy controls. Additional analysis showed that the expression level of LOX and HIF1α was related to the clinicopathological characteristics of GC. Expression of LOX and HIF1α increased with the number of lymph node metastases, deeper infiltration depth and later tumor–node–metastasis stages. Single-factor analysis showed that high expression of LOX and HIF1α led to poor prognosis of patients with GC.CONCLUSION LOX and HIF1α can be used as prognostic and predictive biomarkers for GC.
基金supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo,Conselho Nacional de Desenvolvimento Científico e Tecnologico (NO.2009/10771-9)Coordenacao de Aperfeicoamento de Pessoal de Nível Superior (NO.301052/2009-3),Brazil
文摘Objective:To evaluate whether hypoxia inducible factor(HIF-1α) targeting pharmacological drugs,echinomycin,resveratrol and CdCl_2 which inhibit HIF-1α stimulation,and mimosine,which enhances the stability of HIF-1α present antileishmanial properties.Methods:The leishmanicidal effect of drugs was evaluated in mouse macrophages and Balb/c mouse model for cutaneous leishmaniosis.Results:Resveratrol and CdCl_2 reduced the parasite load [IC50,(27.3±2.25) μM and(24.8±0.95) μM,respectively].The IC50 value of echinomycin was(22.7±7.36) nM and mimosine did not alter the parasite load in primary macrophages.The macrophage viability IC50 values for resveratrol,echinomycin and CdCl_2 and mimosine were >40 μM,>100 nM,> 200 μM and>2 000 μM,respectively.In vivo no differences between cutaneous lesions from control,resveratrol-and echinomycin-treated Balb/c mice were detected.Conclusions:Resveratrol,echinomycin and CdCl_2 reduce parasite survival in vitro.The HIF-1α targeting pharmacological drugs require further study to more fully determine their anti-Leishmania potential and their role in therapeutic strategies.
基金Supported by The Ministerio de de Sanidad y Consumo(PI081988)CIBER-EHD,Instituto Carlos Ⅲ,Madrid and Ministerio de Asuntos Exteriores y de Cooperación Internacionales(A/020255/08 and A/02987/09),Madrid
文摘AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model and we evaluated HIF-1αin steatotic and non-steatotic livers preserved for 24 h at 4℃in University of Wisconsin and IGL-1 solutions,and then subjected to 2 h of normothermic reperfusion.After normoxic reperfusion,liver enzymes,bile production,bromosulfophthalein clearance,as well as HIF-1αand NO[endothelial NO synthase(eNOS)activity and nitrites/nitrates]were also measured.Other factors associated with the higher susceptibility of steatotic livers to IRI,such as mitochondrial damage and vascular resistance were evaluated. RESULTS:A significant increase in HIF-1αwas found in steatotic and non-steatotic livers preserved in IGL-1 after cold storage.Livers preserved in IGL-1 showed a significant attenuation of liver injury and improvement in liver function parameters.These benefits were enhanced by the addition of trimetazidine(an antiischemic drug),which induces NO and eNOS activation, to IGL-1 solution.In normoxic reperfusion,the presence of NO favors HIF-1αaccumulation,promoting also the activation of other cytoprotective genes,such as hemeoxygenase-1. CONCLUSION:We found evidence for the role of the HIF-1α/NO system in fatty liver preservation,especially when IGL-1 solution is used.
基金Supported by National Natural Science Foundation of China,No. 82070609
文摘BACKGROUND The occurrence and development of acute liver failure(ALF)is closely related to a series of inflammatory reactions,such as the production of reactive oxygen species(ROS).Hypoxia inducible factor 1α(HIF-1α)is a key factor that regulates oxygen homeostasis and redox,and the stability of HIF-1αis related to the ROS level regulated by Sirtuin(Sirt)family.The activation of Sirt1 will lead to a powerful antioxidant defense system and therapeutic effects in liver disease.However,little is known about the relationship between HIF-1αand Sirt1 in the process of ALF and the molecular mechanism.AIM To investigate whether HIF-1αmay be a target of Sirt1 deacetylation and what the effects on ALF are.METHODS Mice were administrated lipopolysaccharide(LPS)/D-gal and exposed to hypoxic conditions as animal model,and resveratrol was used as an activator of Sirt1.The cellular model was established with L02 cells stimulated by LPS.N-acetyl-Lcysteine was used to remove ROS,and the expression of Sirt1 was inhibited by nicotinamide.Western blotting was used to detect Sirt1 and HIF-1αactivity and related protein expression.The possible signaling pathways involved were analyzed by immunofluorescent staining,co-immunoprecipitation,dihydroethidium staining,and Western blotting.RESULTS Compared with mice stimulated with LPS alone,the expression of Sirt1 decreased,the level of HIF-1αacetylation increased in hypoxic mice,and the levels of carbonic anhydrase 9 and Bcl-2-adenovirus E1B interacting protein 3 increased significantly,which was regulated by HIF-1α,indicating an increase of HIF-1αactivity.Under hypoxia,the down-regulation of Sirt1 activated and acetylated HIF-1αin L02 cells.The inhibition of Sirt1 significantly aggravated this effect and the massive production of ROS.The regulation of ROS was partly through peroxisome proliferatoractivated receptor alpha or AMP-activated protein kinase.Resveratrol,a Sirt1 activator,effectively relieved ALF aggravated by hypoxia,the production of ROS,and cell apoptosis.It also induced the deacetylation of HIF-1αand inhibited the activity of HIF-1α.CONCLUSION Sirt1 may have a protective effect on ALF by inducing HIF-1α deacetylation to reduce ROS.
基金Supported by The National Natural Science Foundation of ChinaNo.81330013 and No.81272078 to Yang H+2 种基金No.81270451 to Xiao WDthe Program for Changjiang Scholars and Innovative Research Team in UniversitiesNo.13051 to Yang H
文摘AIM: To investigate the roles and interactions of mut T homolog(MTH)-1 and hypoxia-inducible factor(HIF)-1α in human colorectal cancer(CRC).METHODS: The expression and distribution of HIF-1α and MTH-1 proteins were detected in human CRC tissues by immunohistochemistry and quantitative realtime polymerase chain reaction(q RT-PCR). SW480 and HT-29 cells were exposed to normoxia or hypoxia. Protein and m RNA levels of HIF-1α and MTH-1 were analyzed by western blotting and q RT-PCR, respectively. In order to determine the effect of HIF-1α on the expression of MTH-1 and the amount of 8-oxodeoxyguanosine triphosphate(d GTP) in SW480 and HT-29 cells, HIF-1α was silenced with small interfering RNA(si RNA). Growth studies were conducted on cells with HIF-1α inhibition using a xenograft tumor model. Finally, MTH-1 protein was detected by western blotting in vivo.RESULTS: High MTH-1 m RNA expression was detected in 64.2% of cases(54/84), and this was significantly correlated with tumor stage(P = 0.023) and size(P = 0.043). HIF-1α protein expression was correlated significantly with MTH-1 expression(R = 0.640; P < 0.01) in human CRC tissues. Hypoxic stress induced m RNA and protein expression of MTH-1 in SW480 and HT-29 cells. Inhibition of HIF-1α by si RNA decreased the expression of MTH-1 and led to the accumulation of 8-oxo-d GTP in SW480 and HT-29 cells. In the in vivo xenograft tumor model, expression of MTH-1 was decreased in the HIF-1α si RNA group, and the tumor volume was much smaller than that in the mock si RNA group.CONCLUSION: MTH-1 expression in CRC cells was upregulated via HIF-1α in response to hypoxic stress, emphasizing the crucial role of HIF-1α-induced MTH-1 in tumor growth.
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government,No.NRF-013-2011-1-E00045
文摘Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible factor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chronological changes of neural stem cells by 5-bromo-2′-deoxyuridine(BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1α immunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-infarct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3–7 days. Nestin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neurons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and vascular endothelial growth factor after ischemia made up the microenvironment to increase the neuronal plasticity of activated endogenous neural stem cells. Moreover, neural precursor cells after large-scale cortical injury could be recruited from the cortex nearby infarct core and subventricular zone.