Hypoxia-inducible factor 1(HIF1)has a crucial function in the regulation of oxygen levels in mammalian cells,especially under hypoxic conditions.Its importance in cardiovascular diseases,particularly in cardiac ischem...Hypoxia-inducible factor 1(HIF1)has a crucial function in the regulation of oxygen levels in mammalian cells,especially under hypoxic conditions.Its importance in cardiovascular diseases,particularly in cardiac ischemia,is because of its ability to alleviate cardiac dysfunction.The oxygen-responsive subunit,HIF1α,plays a crucial role in this process,as it has been shown to have cardioprotective effects in myocardial infarction through regulating the expression of genes affecting cellular survival,angiogenesis,and metabolism.Furthermore,HIF1αexpression induced reperfusion in the ischemic skeletal muscle,and hypoxic skin wounds in diabetic animal models showed reduced HIF1αexpression.Increased expression of HIF1αhas been shown to reduce apoptosis and oxidative stress in cardiomyocytes during acute myocardial infarction.Genetic variations in HIF1αhave also been found to correlate with altered responses to ischemic cardiovascular disease.In addition,a link has been established between the circadian rhythm and hypoxic molecular signaling pathways,with HIF1αfunctioning as an oxygen sensor and circadian genes such as period circadian regulator 2 responding to changes in light.This editorial analyzes the relationship between HIF1αand the circadian rhythm and highlights its significance in myocardial adaptation to hypoxia.Understanding the changes in molecular signaling pathways associated with diseases,specifically cardiovascular diseases,provides the opportunity for innovative therapeutic interventions,especially in low-oxygen environments such as myocardial infarction.展开更多
Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin ...Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin (EPO) in vivo and in vitro. Methods Rat model of cerebral ischemia was established by middle cerebral artery occlusion with or without DFO administration. Infarct size was examined by TTC staining, and the neurological severity score was evaluated according to published method. Cortical neurons were cultured under ischemia stress which was mimicked by oxygen-glucose deprivation (OGD), and the neuron damage was assessed by MTT assay. Immunofluorescent staining was employed to detect the expressions of HIF-1 and EPO. Results The protective effect induced by DFO (decreasing the infarction volume and ameliorating the neurological function) appeared at 2 d after administration ofDFO (post-DFO), lasted until 7 d and disappeared at 14 d (P 〈 0.05); the most effective action was observed at 3 d post-DFO. DFO induced tolerance of cultured neurons against OGD: neuronal viability was increased 23%, 34%, 40%, 48% and 56% at 8 h, 12 h, 24 h, 36 h, and 48 h, respectively, post-DFO (P 〈 0.05). Immunofluorescent staining found that HIF-1 α and EPO were upregulated in the neurons of rat brain at 3 d and 7 d post-DFO; increase of HIF-1 α and EPO appeared in cultured cortex neurons at 36 h and 48 h post-DFO. Conclusion DFO induced tolerance against focal cerebral ischemia in rats, and exerted protective effect on OGD cultured cortical neurons. DFO significant induced the expression of HIF- 1 α and EPO both in vivo and in vitro. DFO preconditioning can protect against cerebral ischemia, which may be associated with the synthesis of HIF- 1 α and EPO.展开更多
DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-bu...DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.展开更多
BACKGROUND: Neural stem cell (NSC) survival is closely associated with cell apoptosis in ischemic-hypoxic regions following transplantation. Numerous studies have revealed that X-box binding protein 1 (XBP1) is a...BACKGROUND: Neural stem cell (NSC) survival is closely associated with cell apoptosis in ischemic-hypoxic regions following transplantation. Numerous studies have revealed that X-box binding protein 1 (XBP1) is a transcription factor during endoplasmic reticulum unfolded protein response and is essential for cell survival, differentiation, and anti-apoptotic effects. OBJECTIVE: To determine the effects of the XBP1 gene on NSC proliferation and apoptosis under hypoxic conditions following XBP1 gene transfection into rat embryonic hippocampal NSCs using recombinant adenovirus vector. DESIGN, TIME AND SETTING: In vitro experiments were performed at the Laboratory of Cell Biology of Jilin University and Laboratory of Proteomics, Department of Neurology, Jilin University China from September 2008 to November 2009. MATERIALS: Recombinant adenovirus package XBP1 gene and Ad-XBPl-enhanced green fluorescent protein plasmid (Guangzhou Easywin BioMed Technology, China), rabbit anti-XBP1 and its target gene estrogen receptor degradation-enhancing a-mannosidase-like protein (EDEM) glucose-regulated protein 78 (GRP78), anti-apoptotic molecule Bcl-2 and proapoptotic molecule Bax polyclonal antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), and COCI2 (Sigma, St. Louis, MO, USA) were used in the present study. METHODS: Hippocampi from embryonic, Sprague Dawley rats on gestational day 16 were harvested for NSC isolation and cloning, followed by immunofluorescence for Nestin and sub-culturing. The recombinant adenovirus Ad-XBPl-enhanced green fluorescent protein plasmid was transfected into rat embryonic hippocampal NSCs, and then CoCl2 was applied to induce hypoxia. MAIN OUTCOME MEASURES: Cell quantification and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide colorimetric assay were utilized to detect proliferation in XBPl-transfected NSCs for 7 consecutive days. Western blot assay was utilized to quantify XBP1 GRP78, EDEM, Bcl-2, and Bax expression. Flow cytometry was used to measure apoptosis. RESULTS: NSC proliferation was significantly enhanced following XBP1 gene transfection (P 〈 0.05). Under hypoxic conditions, GRP78, EDEM, and Bcl-2 levels increased, but Bax levels decreased. In addition, NSC apoptosis decreased following transfection (P 〈 0.05). CONCLUSION: The XBP1 gene was successfully transfected into rat embryonic hippocampal NSCs using a recombinant adenovirus vector. NSC proliferation following transfection, as well as anti-apoptotic effects under hypoxia, was significantly increased.展开更多
Summary: In order to investigate the expression of nerve growth factor (NGF) and hypoxia inducible factor-1α (HIF-1α) and its correlation with angiogenesis in non-small cell lung cancer (NSCLC), paraffin-embe...Summary: In order to investigate the expression of nerve growth factor (NGF) and hypoxia inducible factor-1α (HIF-1α) and its correlation with angiogenesis in non-small cell lung cancer (NSCLC), paraffin-embedded tissue blocks from 20 patients with NSCLC were examined. Twenty corresponding para-cancerous lung tissue specimens were obtained to serve as a control. The expression of NGF, HIF-1α, and vascular endothelial growth factor (VEGF) in the NSCLC tissues was detected by using immunohistochemistry. The microvascular density (MVD) was determined by CD31 staining. The resuits showed that the expression levels ofNGF, HIF-1α and VEGF in the NSCLC tissues were remarkably higher than those in the para-cancerous lung tissues (P〈0.05). There was significant difference in the MVD between the NSCLC tissues (9.19±1.43) and para-cancerous lung tissues (2.23±1.19) (P〈0.05). There were positive correlations between NGF and VEGF, between HIF-1α and VEGF, and between NGF and HIF-1α in NSCLC tissues, with the spearman correlation coefficient being 0.588, 0.519 and 0.588, respectively. In NSCLC tissues, the MVD had a positive correlation with the three factors (P〈0.05). Theses results suggest that NGF and HIF-1α are synergically involved in the angiogenesis of NSCLC.展开更多
Brachial plexus avulsion often results in massive motor neuron death and severe functional deficits of target muscles. However, no satisfactory treatment is currently available. Hypoxia-inducible factor 1α is a criti...Brachial plexus avulsion often results in massive motor neuron death and severe functional deficits of target muscles. However, no satisfactory treatment is currently available. Hypoxia-inducible factor 1α is a critical molecule targeting several genes associated with ischemia-hypoxia damage and angiogenesis. In this study, a rat model of brachial plexus avulsion-reimplantation was established, in which C5–7 ventral nerve roots were avulsed and only the C6 root reimplanted. Different implants were immediately injected using a microsyringe into the avulsion-reimplantation site of the C6 root post-brachial plexus avulsion. Rats were randomly divided into five groups: phosphate-buffered saline, negative control of lentivirus, hypoxia-inducible factor 1α(hypoxia-inducible factor 1α overexpression lentivirus), gel(pluronic F-127 hydrogel), and gel + hypoxia-inducible factor 1α(pluronic F-127 hydrogel + hypoxia-inducible factor 1α overexpression lentivirus). The Terzis grooming test was performed to assess recovery of motor function. Scores were higher in the hypoxia-inducible factor 1α and gel +hypoxia-inducible factor 1α groups(in particular the gel + hypoxia-inducible factor 1α group) compared with the phosphate-buffered saline group. Electrophysiology, fluorogold retrograde tracing, and immunofluorescent staining were further performed to investigate neural pathway reconstruction and changes of neurons, motor endplates, and angiogenesis. Compared with the phosphate-buffered saline group, action potential latency of musculocutaneous nerves was markedly shortened in the hypoxia-inducible factor 1α and gel + hypoxia-inducible factor1α groups. Meanwhile, the number of fluorogold-positive cells and ChAT-positive neurons, neovascular area(labeled by CD31 around av ulsed sites in ipsilateral spinal cord segments), and the number of motor endplates in biceps brachii(identified by α-bungarotoxin) were all visibly increased, as well as the morphology of motor endplate in biceps brachil was clear in the hypoxia-inducible factor 1α and gel + hypoxia-inducible factor 1α groups. Taken together, delivery of hypoxia-inducible factor 1α overexpression lentiviral vectors mediated by pluronic F-127 effectively promotes spinal root regeneration and functional recovery post-brachial plexus avulsion. All animal procedures were approved by the Institutional Animal Care and Use Committee of Guangdong Medical University, China.展开更多
AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B(PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lin...AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B(PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lines Eca109 and TE13 were cultured under hypoxia environment, and the protein, m RNA and activity levels of hypoxia inducible factor-1 alpha(HIF-1α), glucose transporter 1, hexokinase-Ⅱ, phosphofructokinase 2 and lactate dehydrogenase-A were determined. Supernatant lactic acid concentrations were also detected. The PI3K/AKT signaling pathway was then inhibited with wortmannin, and the effects of hypoxia on the expression or activities of HIF-1α, associated glycolytic enzymes and lactic acid concentrations were observed. Esophageal carcinoma cells were then transfected with interference plasmid with HIF-1α-targeting si RNA to assess impact of the high expression of HIF-1α on glycolysis.RESULTS: HIF-1α is highly expressed in the esophageal carcinoma cell lines tested, and with decreasing levels of oxygen, the expression of HIF-1α and the associated glycolytic enzymes and the extracellular lactic acid concentration were enhanced in the esophageal carcinoma cell lines Eca109 and TE13. In both normoxia and hypoxic conditions, the level of glycolytic enzymesand the secretion of lactic acid were both reduced by wortmannin. The expression and activities of glycolytic enzymes and the lactic acid concentration in cells were reduced by inhibiting HIF-1α, especially the decreasing level of glycolysis was significant under hypoxic conditions.CONCLUSION: The PI3K/AKT pathway and HIF-1α are both involved in the process of glycolysis in esophageal cancer cells.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a malignant tumor that occurs in the liver.Its onset is latent,and it shows high heterogeneity and can readily experience intrahepatic metastasis or systemic metastasis,which...BACKGROUND Hepatocellular carcinoma(HCC)is a malignant tumor that occurs in the liver.Its onset is latent,and it shows high heterogeneity and can readily experience intrahepatic metastasis or systemic metastasis,which seriously affects patients’quality of life.Numerous studies have shown that hypoxia inducible factor1α(HIF-1α)plays a significant role in the occurrence and development of tumors,as it promotes the formation of intratumoral vessels and plays a key role in their metastasis and invasion.Some studies have reported that caspase-3,which is induced by various factors,is involved in the apoptosis of tumor cells.AIM To investigate the expression of caspase-3 and HIF-1αand their relationship to the prognosis of patients with primary HCC complicated by pathological changes of hemorrhage and necrosis.METHODS A total of 88 patients with HCC complicated by pathological changes of hemorrhage and necrosis who were treated at our hospital from January 2017 to December 2019 were selected.The expression of caspase-3 and HIF-1αin HCC and paracancerous tissues from these patients was assessed.RESULTS The positive expression rate of caspase-3 in HCC tissues was 27.27%,which was significantly lower than that in the paracancerous tissues(P<0.05),while the positive expression rate of HIF-1αwas 72.73%,which was significantly higher than that in the paracancerous tissues(P<0.05).The positive expression rates for caspase-3 in tumor node metastasis(TNM)stage III and lymph node metastasis tissues were 2.78%and 2.50%,respectively,which were significantly lower than those in TNM stage I-II and non-lymph node metastasis tissues(P<0.05).The positive expression rates of HIF-1αin TNM stage III,lymph node metastasis,and portal vein tumor thrombus tissues were 86.11%,87.50%,and 88.00%,respectively,and these values were significantly higher than those in TNM stage I-II,non-lymph node metastasis,and portal vein tumor thrombus tissues(P<0.05).The expression of caspase-3 and HIF-1αin HCC tissues were negatively correlated(rs=−0.426,P<0.05).The median overall survival time of HCC patients was 18.90 mo(95%CI:17.20–19.91).The results of the Cox proportional risk regression model analysis showed that TNM stage,portal vein tumor thrombus,lymph node metastasis,caspase-3 expression,and HIF-1αexpression were the factors influencing patient prognosis(P<0.05).CONCLUSION The expression of caspase-3 decreases and HIF-1αincreases in HCC tissues complicated by pathological changes of hemorrhage and necrosis,and these are related to clinicopathological features and prognosis.展开更多
To examine the expression profiles of oligodendrocyte transcription factors 1 and 2 (Oligl and Olig2) and the interaction between these two proteins, Oligl was transfected into the lateral ventricles of neonatal rat...To examine the expression profiles of oligodendrocyte transcription factors 1 and 2 (Oligl and Olig2) and the interaction between these two proteins, Oligl was transfected into the lateral ventricles of neonatal rats subjected to hypoxia. Immunohistochemistry demonstrated that Olig2 was expressed throughout the nuclei in the brain, and expression increased at 3 days following hypoxia and was higher than levels at 7 days following Ad5-Oligl transfection. Western blot revealed that Oligl and Olig2 expression increased in Oligl-transfected brain cells 3 days after hypoxia, but Oligl and Olig2 expression decreased at 7 days. These results indicate that Oligl overexpression enhances Olig2 expression in brain tissues of hypoxia rats.展开更多
BACKGROUND Extracellular vesicles(EVs)derived from hypoxia-preconditioned(HP)mesenchymal stem cells(MSCs)have better cardioprotective effects against myocardial infarction(MI)in the early stage than EVs isolated from ...BACKGROUND Extracellular vesicles(EVs)derived from hypoxia-preconditioned(HP)mesenchymal stem cells(MSCs)have better cardioprotective effects against myocardial infarction(MI)in the early stage than EVs isolated from normoxic(NC)-MSCs.However,the cardioprotective mechanisms of HP-EVs are not fully understood.AIM To explore the cardioprotective mechanism of EVs derived from HP MSCs.METHODS We evaluated the cardioprotective effects of HP-EVs or NC-EVs from mouse adipose-derived MSCs(ADSCs)following hypoxia in vitro or MI in vivo,in order to improve the survival of cardiomyocytes(CMs)and restore cardiac function.The degree of CM apoptosis in each group was assessed by the terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/PI assays.MicroRNA(miRNA)sequencing was used to investigate the functional RNA diversity between HP-EVs and NC-EVs from mouse ADSCs.The molecular mechanism of EVs in mediating thioredoxin-interacting protein(TXNIP)was verified by the dual-luciferase reporter assay.Co-immunoprecipitation,western blotting,and immunofluorescence were performed to determine if TXNIP is involved in hypoxia-inducible factor-1 alpha(HIF-1α)ubiquitination and degradation via the chromosomal region maintenance-1(CRM-1)-dependent nuclear transport pathway.RESULTS HP-EVs derived from MSCs reduced both infarct size(necrosis area)and apoptotic degree to a greater extent than NC-EVs from CMs subjected to hypoxia in vitro and mice with MI in vivo.Sequencing of EV-associated miRNAs showed the upregulation of 10 miRNAs predicted to bind TXNIP,an oxidative stress-associated protein.We showed miRNA224-5p,the most upregulated miRNA in HP-EVs,directly combined the 3’untranslated region of TXNIP and demonstrated its critical protective role against hypoxia-mediated CM injury.Our results demonstrated that MI triggered TXNIP-mediated HIF-1αubiquitination and degradation in the CRM-1-mediated nuclear transport pathway in CMs,which led to aggravated injury and hypoxia tolerance in CMs in the early stage of MI.CONCLUSION The anti-apoptotic effects of HP-EVs in alleviating MI and the hypoxic conditions of CMs until reperfusion therapy may partly result from EV miR-224-5p targeting TXNIP.展开更多
AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion. METHODS: in this study, we correlated hypoxia induciblefactor(Hi F)-1α expression to the p...AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion. METHODS: in this study, we correlated hypoxia induciblefactor(Hi F)-1α expression to the perfusion temperature and the hepatic oxygen uptake in a model of isolated perfused rat liver. Livers from Wistar rats were perfused for 6 h with an oxygenated medium at 10, 20, 30 and 37 ℃. Oxygen uptake was measured by an oxygen probe; lactate dehydrogenase activity, lactate release and glycogen were measured spectrophotometrically; bile flow was gravitationally determined; p H of the perfusate was also evaluated; Hi F-1α m RNA and protein expression were analyzed by real time-polymerase chain reaction and ELi SA, respectively. RESULTS: Livers perfused at 10 and 20 ℃ showed no difference in lactate dehydrogenase release after 6 h of perfusion(0.96 ± 0.23 vs 0.93 ± 0.09 m U/min per g) and had lower hepatic damage as compared to 30 and 37 ℃(5.63 ± 0.76 vs 527.69 ± 45.27 m U/min per g, respectively, P s < 0.01). After 6 h, tissue ATP was significantly higher in livers perfused at 10 and 20 ℃than in livers perfused at 30 and 37 ℃(0.89 ± 0.06 and 1.16 ± 0.05 vs 0.57 ± 0.09 and 0.33 ± 0.08 nmol/mg, respectively, P s < 0.01). No sign of hypoxia was observed at 10 and 20 ℃, as highlighted by low lactate release respect to livers perfused at 30 and 37 ℃(121.4 ± 12.6 and 146.3 ± 7.3 vs 281.8 ± 45.3 and 1094.5 ± 71.7 nmol/m L, respectively, P s < 0.02), and low relative Hi F-1α m RNA(0.40 ± 0.08 and 0.20 ± 0.03 vs 0.60 ± 0.20 and 1.47 ± 0.30, respectively, P s < 0.05) and protein(3.72 ± 0.16 and 3.65 ± 0.06 vs 4.43 ± 0.41 and 6.44 ± 0.82, respectively, P s < 0.05) expression.CONCLUSION: Livers perfused at 10 and 20 ℃ show no sign of liver injury or anaerobiosis, in contrast to livers perfused at 30 and 37 ℃.展开更多
AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model...AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model and we evaluated HIF-1αin steatotic and non-steatotic livers preserved for 24 h at 4℃in University of Wisconsin and IGL-1 solutions,and then subjected to 2 h of normothermic reperfusion.After normoxic reperfusion,liver enzymes,bile production,bromosulfophthalein clearance,as well as HIF-1αand NO[endothelial NO synthase(eNOS)activity and nitrites/nitrates]were also measured.Other factors associated with the higher susceptibility of steatotic livers to IRI,such as mitochondrial damage and vascular resistance were evaluated. RESULTS:A significant increase in HIF-1αwas found in steatotic and non-steatotic livers preserved in IGL-1 after cold storage.Livers preserved in IGL-1 showed a significant attenuation of liver injury and improvement in liver function parameters.These benefits were enhanced by the addition of trimetazidine(an antiischemic drug),which induces NO and eNOS activation, to IGL-1 solution.In normoxic reperfusion,the presence of NO favors HIF-1αaccumulation,promoting also the activation of other cytoprotective genes,such as hemeoxygenase-1. CONCLUSION:We found evidence for the role of the HIF-1α/NO system in fatty liver preservation,especially when IGL-1 solution is used.展开更多
AIM: To investigate the roles and interactions of mut T homolog(MTH)-1 and hypoxia-inducible factor(HIF)-1α in human colorectal cancer(CRC).METHODS: The expression and distribution of HIF-1α and MTH-1 proteins were ...AIM: To investigate the roles and interactions of mut T homolog(MTH)-1 and hypoxia-inducible factor(HIF)-1α in human colorectal cancer(CRC).METHODS: The expression and distribution of HIF-1α and MTH-1 proteins were detected in human CRC tissues by immunohistochemistry and quantitative realtime polymerase chain reaction(q RT-PCR). SW480 and HT-29 cells were exposed to normoxia or hypoxia. Protein and m RNA levels of HIF-1α and MTH-1 were analyzed by western blotting and q RT-PCR, respectively. In order to determine the effect of HIF-1α on the expression of MTH-1 and the amount of 8-oxodeoxyguanosine triphosphate(d GTP) in SW480 and HT-29 cells, HIF-1α was silenced with small interfering RNA(si RNA). Growth studies were conducted on cells with HIF-1α inhibition using a xenograft tumor model. Finally, MTH-1 protein was detected by western blotting in vivo.RESULTS: High MTH-1 m RNA expression was detected in 64.2% of cases(54/84), and this was significantly correlated with tumor stage(P = 0.023) and size(P = 0.043). HIF-1α protein expression was correlated significantly with MTH-1 expression(R = 0.640; P < 0.01) in human CRC tissues. Hypoxic stress induced m RNA and protein expression of MTH-1 in SW480 and HT-29 cells. Inhibition of HIF-1α by si RNA decreased the expression of MTH-1 and led to the accumulation of 8-oxo-d GTP in SW480 and HT-29 cells. In the in vivo xenograft tumor model, expression of MTH-1 was decreased in the HIF-1α si RNA group, and the tumor volume was much smaller than that in the mock si RNA group.CONCLUSION: MTH-1 expression in CRC cells was upregulated via HIF-1α in response to hypoxic stress, emphasizing the crucial role of HIF-1α-induced MTH-1 in tumor growth.展开更多
BACKGROUND The occurrence and development of acute liver failure(ALF)is closely related to a series of inflammatory reactions,such as the production of reactive oxygen species(ROS).Hypoxia inducible factor 1α(HIF-1α...BACKGROUND The occurrence and development of acute liver failure(ALF)is closely related to a series of inflammatory reactions,such as the production of reactive oxygen species(ROS).Hypoxia inducible factor 1α(HIF-1α)is a key factor that regulates oxygen homeostasis and redox,and the stability of HIF-1αis related to the ROS level regulated by Sirtuin(Sirt)family.The activation of Sirt1 will lead to a powerful antioxidant defense system and therapeutic effects in liver disease.However,little is known about the relationship between HIF-1αand Sirt1 in the process of ALF and the molecular mechanism.AIM To investigate whether HIF-1αmay be a target of Sirt1 deacetylation and what the effects on ALF are.METHODS Mice were administrated lipopolysaccharide(LPS)/D-gal and exposed to hypoxic conditions as animal model,and resveratrol was used as an activator of Sirt1.The cellular model was established with L02 cells stimulated by LPS.N-acetyl-Lcysteine was used to remove ROS,and the expression of Sirt1 was inhibited by nicotinamide.Western blotting was used to detect Sirt1 and HIF-1αactivity and related protein expression.The possible signaling pathways involved were analyzed by immunofluorescent staining,co-immunoprecipitation,dihydroethidium staining,and Western blotting.RESULTS Compared with mice stimulated with LPS alone,the expression of Sirt1 decreased,the level of HIF-1αacetylation increased in hypoxic mice,and the levels of carbonic anhydrase 9 and Bcl-2-adenovirus E1B interacting protein 3 increased significantly,which was regulated by HIF-1α,indicating an increase of HIF-1αactivity.Under hypoxia,the down-regulation of Sirt1 activated and acetylated HIF-1αin L02 cells.The inhibition of Sirt1 significantly aggravated this effect and the massive production of ROS.The regulation of ROS was partly through peroxisome proliferatoractivated receptor alpha or AMP-activated protein kinase.Resveratrol,a Sirt1 activator,effectively relieved ALF aggravated by hypoxia,the production of ROS,and cell apoptosis.It also induced the deacetylation of HIF-1αand inhibited the activity of HIF-1α.CONCLUSION Sirt1 may have a protective effect on ALF by inducing HIF-1α deacetylation to reduce ROS.展开更多
Mild traumatic brain injury(TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with ne...Mild traumatic brain injury(TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide(NO), the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha(HIF-1α), a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione(GSNO) and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.展开更多
BACKGROUND: Excessive alcohol consumption can result in multiple organ injury, of which alcoholic liver disease (ALD) is the most common. With economic development and improvement of living standards, the incidence of...BACKGROUND: Excessive alcohol consumption can result in multiple organ injury, of which alcoholic liver disease (ALD) is the most common. With economic development and improvement of living standards, the incidence of diseases caused by alcohol abuse has been increasing in China, although its pathogenesis remains obscure. The aim of this study was to investigate the role of hypoxia in chronic ALD. METHODS: Twenty-eight male Sprague-Dawley rats were randomized into a control group (n=12) with a normal history and an experimental group (n=16) fed with 10 ml/ kg of 56% (vol/vol) ethanol once per day by gastric lavage for 24 weeks. At 24 weeks, blood samples were collected and then the rats were killed. Liver samples were frozen at -80 ℃ and used for RT-PCR; other liver samples were obtained for immunohistochemical staining. RESULTS: When the period of alcohol consumption increased, the positive rate of expression of hypoxia- inducible factor-1 alpha (HIF-1α) mRNA was more significantly elevated in the liver of the alcohol group than in the control group (P≤0.05). The HIF-1α protein located in the cytoplasm was seldom expressed in the control group, but significantly in the alcohol group (P≤0.01). CONCLUSION: HIF-1α mRNA expression was activated by ethanol-induced injury in this study, suggesting that hypoxia is involved in the underlying mechanism of ALD.展开更多
BACKGROUND Ischemia-reperfusion injury(IRI) is a major risk associated with liver surgery and transplantation,and its pathological mechanism is complex.Interleukin-1 receptor antagonist(IL-1ra) can protect the liver f...BACKGROUND Ischemia-reperfusion injury(IRI) is a major risk associated with liver surgery and transplantation,and its pathological mechanism is complex.Interleukin-1 receptor antagonist(IL-1ra) can protect the liver from IRI.However,the regulatory mechanism of IL-1ra expression is still unclear.AIM To identify the mechanism that could protect the liver in the early stage of IRI.METHODS To screen the key genes in hepatic IRI,we performed RNA sequencing and gene enrichment analysis on liver tissue from mice with hepatic IRI.Subsequently,we verified the expression and effect of IL-1ra in hepatic IRI.We also used promoter mutagenesis and chromatin immunoprecipitation assay to search for the transcriptional regulatory sites of hypoxia-inducible factor(HIF)-1α.Finally,to explore the protective mechanism of ischemic preconditioning(IP),we examined the expression of HIF-1α and IL-1ra after IP.RESULTS We identified IL-1ra as a key regulator in hepatic IRI.The expression of IL-1ra was significantly upregulated after hepatic IRI both in vivo and in vitro.Furthermore,we found that HIF-1αregulated Il-1ra transcription in response to hypoxia.Increased HIF-1α accumulation promoted IL-1ra expression,whereas inhibition of HIF-1α exhibited the opposite effect.We also confirmed a predominant role for hypoxia response element in the regulation of Il1ra transcription by HIF-1αactivation.Of note,we demonstrated that IP protects against hepatic IRI by inducing IL-1ra expression,which is mediated through HIF-1α.CONCLUSION We demonstrated that ischemia or hypoxia leads to increased expression of IL-1ra through HIF-1α.Importantly,IP protects the liver from IRI via the HIF-1α–IL-1ra pathway.展开更多
The effects of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin on the enhanced hypoxia induced factor-let (HIF-lct) and endothelin-1 (ET-1) expression, elevated systolic blood pres...The effects of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin on the enhanced hypoxia induced factor-let (HIF-lct) and endothelin-1 (ET-1) expression, elevated systolic blood pressure under chronic intermittent hypoxia (CIH) condition and its action mechanism were investigated. Thirty healthy 8-week old Sprague-Dawley (SD) male rats were randomly divided into three groups (n=10 each): sham group, CIH group, and apocynin-treated CIH group. Tail artery systolic blood pressure was measured by tail-cuff method. Real-time fluorescence quantitative polymerase chain reaction (PCR) was used to detect the mRNA expression of HIF-lu and ET-1 in the carotid body, and the HIF-1a protein expression was examined by using Western blotting. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were determined by using colorimetric method. In addition, the plasma ET-1 and HIF-1a levels were measured by using enzyme-linked immunosorbent assay. It was found that CIH exposure was associated with increased MDA levels, and apo- cynin-treated CIH animals showed reduction in MDA levels. Apocynin treatment prevented CIH-induced hypertension as well as CIH-induced decrease in SOD. The increases of HIF-1a and ET-1 mRNA along with HIF-la protein expression in the carotid body, and elevated circulating HIF-1a and ET-1 levels were observed in CIH-exposed animals. Treatment with apocynin significantly decreased the ET-1 mRNA, HIF-lct protein expression and circulating HIF-la level in CIH-exposed animals, and there was no statistically significant difference in the HIF-lu mRNA expression between CIH group and apo- cynin-treated group. These results indicated that apocynin alleviated CIH-induced hypertension by inhibiting NADPH oxidase, further leading to the reduced vasoconstrictor ET-1 level and oxidative stress. HIF-1a/ET-1 system signal pathway may interact with CIH-induced NADPH oxidase-dependent oxidative stress. Inhibition of NADPH oxidase activity may hopefully serve as a useful strategy for prevention and treatment of obstructive sleep apnea hypopnea syndrome-induced hypertension.展开更多
BACKGROUND As human placenta-derived mesenchymal stem cells(hP-MSCs)exist in a physiologically hypoxic microenvironment,various studies have focused on the influence of hypoxia.However,the underlying mechanisms remain...BACKGROUND As human placenta-derived mesenchymal stem cells(hP-MSCs)exist in a physiologically hypoxic microenvironment,various studies have focused on the influence of hypoxia.However,the underlying mechanisms remain to be further explored.AIM The aim was to reveal the possible mechanisms by which hypoxia enhances the proliferation of hP-MSCs.METHODS A hypoxic cell incubator(2.5%O2)was used to mimic a hypoxic microenvironment.Cell counting kit-8 and 5-ethynyl-20-deoxyuridine incorporation assays were used to assay the proliferation of hP-MSCs.The cell cycle was profiled by flow cytometry.Transcriptome profiling of hP-MSCs under hypoxia was performed by RNA sequencing.CD99 mRNA expression was assayed by reverse transcription-polymerase chain reaction.Small interfering RNA-mediated hypoxia-inducible factor 1α(HIF-1α)or CD99 knockdown of hP-MSCs,luciferase reporter assays,and the ERK1/2 signaling inhibitor PD98059 were used in the mechanistic analysis.Protein expression was assayed by western blotting;immunofluorescence assays were conducted to evaluate changes in expression levels.RESULTS Hypoxia enhanced hP-MSC proliferation,increased the expression of cyclin E1,cyclin-dependent kinase 2,and cyclin A2,and decreased the expression of p21.Under hypoxia,CD99 expression was increased by HIF-1α.CD99-specific small interfering RNA or the ERK1/2 signaling inhibitor PD98059 abrogated the hypoxia-induced increase in cell proliferation.CONCLUSION Hypoxia promoted hP-MSCs proliferation in a manner dependent on CD99 regulation of the MAPK/ERK signaling pathway in vitro.展开更多
To examine the effect of transcatheter arterial embolization (TAE) of liver tumors on hypoxia-inducible factor-1α (HIF-1α) expression in the residual viable tumor, a total of 30 New Zealand White rabbits implant...To examine the effect of transcatheter arterial embolization (TAE) of liver tumors on hypoxia-inducible factor-1α (HIF-1α) expression in the residual viable tumor, a total of 30 New Zealand White rabbits implanted with VX2 liver tumor were divided into 2 groups. TAE-treated group animals (n=15) were subjected to TAE with 150–250 μm polyvinyl alcohol particles. Control group animals (n=15) underwent sham embolization with distilled water. Six hours, 3 days or 7 days after TAE, the animals were sacrificed, and samples of tumor and adjacent normal liver tissue were harvested. Expression of HIF-1α protein was examined immunohistochemically. Real-time PCR was performed to examine the HIF-1α mRNA levels. Our results showed that HIF-1α protein was expressed in the VX2 tumors but not in the adjacent normal liver tissue. The HIF-1α-positive tumor cells were located predominantly at the periphery of necrotic tumor regions. The mean levels of HIF-1α protein were significantly higher in TAE-treated tumors than those in control tumors (P=0.002). Among the three sacrificing time points, the difference in increase in HIF-1α protein was significant between the two groups at the sacrificing time point of 6 h and 3 days after TAE (P=0.020, P=0.031, respectively), whereas no significant increase was noted 7 days after TAE (P=0.502). In contrast, although HIF-1α mRNA was expressed in TAE-treated and control VX2 tumors, there existed no significant difference in the HIF-1α mRNA level between the two groups (P=0.372). It is concluded that TAE of liver tumors increases the expression of HIF-1α at protein level in the residual viable tumor, which could be attributed to hypoxia generated by the procedure.展开更多
基金Supported by Croatian Ministry of Science and Education,Josip Juraj Strossmayer University of Osijek,Faculty of Dental Medicine and Health,Osijek,Croatia,No.IP7-FDMZ-2023West-Siberian Science and Education Center,Government of Tyumen District,Decree of 20.11.2020,No.928-rpMinistry of Science and Higher Education,No.FMEN 2022-0009.
文摘Hypoxia-inducible factor 1(HIF1)has a crucial function in the regulation of oxygen levels in mammalian cells,especially under hypoxic conditions.Its importance in cardiovascular diseases,particularly in cardiac ischemia,is because of its ability to alleviate cardiac dysfunction.The oxygen-responsive subunit,HIF1α,plays a crucial role in this process,as it has been shown to have cardioprotective effects in myocardial infarction through regulating the expression of genes affecting cellular survival,angiogenesis,and metabolism.Furthermore,HIF1αexpression induced reperfusion in the ischemic skeletal muscle,and hypoxic skin wounds in diabetic animal models showed reduced HIF1αexpression.Increased expression of HIF1αhas been shown to reduce apoptosis and oxidative stress in cardiomyocytes during acute myocardial infarction.Genetic variations in HIF1αhave also been found to correlate with altered responses to ischemic cardiovascular disease.In addition,a link has been established between the circadian rhythm and hypoxic molecular signaling pathways,with HIF1αfunctioning as an oxygen sensor and circadian genes such as period circadian regulator 2 responding to changes in light.This editorial analyzes the relationship between HIF1αand the circadian rhythm and highlights its significance in myocardial adaptation to hypoxia.Understanding the changes in molecular signaling pathways associated with diseases,specifically cardiovascular diseases,provides the opportunity for innovative therapeutic interventions,especially in low-oxygen environments such as myocardial infarction.
文摘Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin (EPO) in vivo and in vitro. Methods Rat model of cerebral ischemia was established by middle cerebral artery occlusion with or without DFO administration. Infarct size was examined by TTC staining, and the neurological severity score was evaluated according to published method. Cortical neurons were cultured under ischemia stress which was mimicked by oxygen-glucose deprivation (OGD), and the neuron damage was assessed by MTT assay. Immunofluorescent staining was employed to detect the expressions of HIF-1 and EPO. Results The protective effect induced by DFO (decreasing the infarction volume and ameliorating the neurological function) appeared at 2 d after administration ofDFO (post-DFO), lasted until 7 d and disappeared at 14 d (P 〈 0.05); the most effective action was observed at 3 d post-DFO. DFO induced tolerance of cultured neurons against OGD: neuronal viability was increased 23%, 34%, 40%, 48% and 56% at 8 h, 12 h, 24 h, 36 h, and 48 h, respectively, post-DFO (P 〈 0.05). Immunofluorescent staining found that HIF-1 α and EPO were upregulated in the neurons of rat brain at 3 d and 7 d post-DFO; increase of HIF-1 α and EPO appeared in cultured cortex neurons at 36 h and 48 h post-DFO. Conclusion DFO induced tolerance against focal cerebral ischemia in rats, and exerted protective effect on OGD cultured cortical neurons. DFO significant induced the expression of HIF- 1 α and EPO both in vivo and in vitro. DFO preconditioning can protect against cerebral ischemia, which may be associated with the synthesis of HIF- 1 α and EPO.
文摘DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.
文摘BACKGROUND: Neural stem cell (NSC) survival is closely associated with cell apoptosis in ischemic-hypoxic regions following transplantation. Numerous studies have revealed that X-box binding protein 1 (XBP1) is a transcription factor during endoplasmic reticulum unfolded protein response and is essential for cell survival, differentiation, and anti-apoptotic effects. OBJECTIVE: To determine the effects of the XBP1 gene on NSC proliferation and apoptosis under hypoxic conditions following XBP1 gene transfection into rat embryonic hippocampal NSCs using recombinant adenovirus vector. DESIGN, TIME AND SETTING: In vitro experiments were performed at the Laboratory of Cell Biology of Jilin University and Laboratory of Proteomics, Department of Neurology, Jilin University China from September 2008 to November 2009. MATERIALS: Recombinant adenovirus package XBP1 gene and Ad-XBPl-enhanced green fluorescent protein plasmid (Guangzhou Easywin BioMed Technology, China), rabbit anti-XBP1 and its target gene estrogen receptor degradation-enhancing a-mannosidase-like protein (EDEM) glucose-regulated protein 78 (GRP78), anti-apoptotic molecule Bcl-2 and proapoptotic molecule Bax polyclonal antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), and COCI2 (Sigma, St. Louis, MO, USA) were used in the present study. METHODS: Hippocampi from embryonic, Sprague Dawley rats on gestational day 16 were harvested for NSC isolation and cloning, followed by immunofluorescence for Nestin and sub-culturing. The recombinant adenovirus Ad-XBPl-enhanced green fluorescent protein plasmid was transfected into rat embryonic hippocampal NSCs, and then CoCl2 was applied to induce hypoxia. MAIN OUTCOME MEASURES: Cell quantification and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide colorimetric assay were utilized to detect proliferation in XBPl-transfected NSCs for 7 consecutive days. Western blot assay was utilized to quantify XBP1 GRP78, EDEM, Bcl-2, and Bax expression. Flow cytometry was used to measure apoptosis. RESULTS: NSC proliferation was significantly enhanced following XBP1 gene transfection (P 〈 0.05). Under hypoxic conditions, GRP78, EDEM, and Bcl-2 levels increased, but Bax levels decreased. In addition, NSC apoptosis decreased following transfection (P 〈 0.05). CONCLUSION: The XBP1 gene was successfully transfected into rat embryonic hippocampal NSCs using a recombinant adenovirus vector. NSC proliferation following transfection, as well as anti-apoptotic effects under hypoxia, was significantly increased.
基金supported by the Scientific Research Program of Health Department of Hubei Province,China(No.JX6B04)
文摘Summary: In order to investigate the expression of nerve growth factor (NGF) and hypoxia inducible factor-1α (HIF-1α) and its correlation with angiogenesis in non-small cell lung cancer (NSCLC), paraffin-embedded tissue blocks from 20 patients with NSCLC were examined. Twenty corresponding para-cancerous lung tissue specimens were obtained to serve as a control. The expression of NGF, HIF-1α, and vascular endothelial growth factor (VEGF) in the NSCLC tissues was detected by using immunohistochemistry. The microvascular density (MVD) was determined by CD31 staining. The resuits showed that the expression levels ofNGF, HIF-1α and VEGF in the NSCLC tissues were remarkably higher than those in the para-cancerous lung tissues (P〈0.05). There was significant difference in the MVD between the NSCLC tissues (9.19±1.43) and para-cancerous lung tissues (2.23±1.19) (P〈0.05). There were positive correlations between NGF and VEGF, between HIF-1α and VEGF, and between NGF and HIF-1α in NSCLC tissues, with the spearman correlation coefficient being 0.588, 0.519 and 0.588, respectively. In NSCLC tissues, the MVD had a positive correlation with the three factors (P〈0.05). Theses results suggest that NGF and HIF-1α are synergically involved in the angiogenesis of NSCLC.
基金financially supported by the National Natural Science Foundation of China,No.81371366(to HFW)the Natural Science Foundation of Guangdong Province of China,No.2015A030313515(to HFW)+1 种基金the Dongguan International Science and Technology Cooperation Project,No.2013508152010(to HFW)the Key Project of Social Development of Dongguan of China,No.20185071521640(to HFW)
文摘Brachial plexus avulsion often results in massive motor neuron death and severe functional deficits of target muscles. However, no satisfactory treatment is currently available. Hypoxia-inducible factor 1α is a critical molecule targeting several genes associated with ischemia-hypoxia damage and angiogenesis. In this study, a rat model of brachial plexus avulsion-reimplantation was established, in which C5–7 ventral nerve roots were avulsed and only the C6 root reimplanted. Different implants were immediately injected using a microsyringe into the avulsion-reimplantation site of the C6 root post-brachial plexus avulsion. Rats were randomly divided into five groups: phosphate-buffered saline, negative control of lentivirus, hypoxia-inducible factor 1α(hypoxia-inducible factor 1α overexpression lentivirus), gel(pluronic F-127 hydrogel), and gel + hypoxia-inducible factor 1α(pluronic F-127 hydrogel + hypoxia-inducible factor 1α overexpression lentivirus). The Terzis grooming test was performed to assess recovery of motor function. Scores were higher in the hypoxia-inducible factor 1α and gel +hypoxia-inducible factor 1α groups(in particular the gel + hypoxia-inducible factor 1α group) compared with the phosphate-buffered saline group. Electrophysiology, fluorogold retrograde tracing, and immunofluorescent staining were further performed to investigate neural pathway reconstruction and changes of neurons, motor endplates, and angiogenesis. Compared with the phosphate-buffered saline group, action potential latency of musculocutaneous nerves was markedly shortened in the hypoxia-inducible factor 1α and gel + hypoxia-inducible factor1α groups. Meanwhile, the number of fluorogold-positive cells and ChAT-positive neurons, neovascular area(labeled by CD31 around av ulsed sites in ipsilateral spinal cord segments), and the number of motor endplates in biceps brachii(identified by α-bungarotoxin) were all visibly increased, as well as the morphology of motor endplate in biceps brachil was clear in the hypoxia-inducible factor 1α and gel + hypoxia-inducible factor 1α groups. Taken together, delivery of hypoxia-inducible factor 1α overexpression lentiviral vectors mediated by pluronic F-127 effectively promotes spinal root regeneration and functional recovery post-brachial plexus avulsion. All animal procedures were approved by the Institutional Animal Care and Use Committee of Guangdong Medical University, China.
基金Supported by the National Natural Science Foundation of China,No.30800511
文摘AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B(PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lines Eca109 and TE13 were cultured under hypoxia environment, and the protein, m RNA and activity levels of hypoxia inducible factor-1 alpha(HIF-1α), glucose transporter 1, hexokinase-Ⅱ, phosphofructokinase 2 and lactate dehydrogenase-A were determined. Supernatant lactic acid concentrations were also detected. The PI3K/AKT signaling pathway was then inhibited with wortmannin, and the effects of hypoxia on the expression or activities of HIF-1α, associated glycolytic enzymes and lactic acid concentrations were observed. Esophageal carcinoma cells were then transfected with interference plasmid with HIF-1α-targeting si RNA to assess impact of the high expression of HIF-1α on glycolysis.RESULTS: HIF-1α is highly expressed in the esophageal carcinoma cell lines tested, and with decreasing levels of oxygen, the expression of HIF-1α and the associated glycolytic enzymes and the extracellular lactic acid concentration were enhanced in the esophageal carcinoma cell lines Eca109 and TE13. In both normoxia and hypoxic conditions, the level of glycolytic enzymesand the secretion of lactic acid were both reduced by wortmannin. The expression and activities of glycolytic enzymes and the lactic acid concentration in cells were reduced by inhibiting HIF-1α, especially the decreasing level of glycolysis was significant under hypoxic conditions.CONCLUSION: The PI3K/AKT pathway and HIF-1α are both involved in the process of glycolysis in esophageal cancer cells.
基金Supported by Research Project for Jiangxi Educational Department,No.180086.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a malignant tumor that occurs in the liver.Its onset is latent,and it shows high heterogeneity and can readily experience intrahepatic metastasis or systemic metastasis,which seriously affects patients’quality of life.Numerous studies have shown that hypoxia inducible factor1α(HIF-1α)plays a significant role in the occurrence and development of tumors,as it promotes the formation of intratumoral vessels and plays a key role in their metastasis and invasion.Some studies have reported that caspase-3,which is induced by various factors,is involved in the apoptosis of tumor cells.AIM To investigate the expression of caspase-3 and HIF-1αand their relationship to the prognosis of patients with primary HCC complicated by pathological changes of hemorrhage and necrosis.METHODS A total of 88 patients with HCC complicated by pathological changes of hemorrhage and necrosis who were treated at our hospital from January 2017 to December 2019 were selected.The expression of caspase-3 and HIF-1αin HCC and paracancerous tissues from these patients was assessed.RESULTS The positive expression rate of caspase-3 in HCC tissues was 27.27%,which was significantly lower than that in the paracancerous tissues(P<0.05),while the positive expression rate of HIF-1αwas 72.73%,which was significantly higher than that in the paracancerous tissues(P<0.05).The positive expression rates for caspase-3 in tumor node metastasis(TNM)stage III and lymph node metastasis tissues were 2.78%and 2.50%,respectively,which were significantly lower than those in TNM stage I-II and non-lymph node metastasis tissues(P<0.05).The positive expression rates of HIF-1αin TNM stage III,lymph node metastasis,and portal vein tumor thrombus tissues were 86.11%,87.50%,and 88.00%,respectively,and these values were significantly higher than those in TNM stage I-II,non-lymph node metastasis,and portal vein tumor thrombus tissues(P<0.05).The expression of caspase-3 and HIF-1αin HCC tissues were negatively correlated(rs=−0.426,P<0.05).The median overall survival time of HCC patients was 18.90 mo(95%CI:17.20–19.91).The results of the Cox proportional risk regression model analysis showed that TNM stage,portal vein tumor thrombus,lymph node metastasis,caspase-3 expression,and HIF-1αexpression were the factors influencing patient prognosis(P<0.05).CONCLUSION The expression of caspase-3 decreases and HIF-1αincreases in HCC tissues complicated by pathological changes of hemorrhage and necrosis,and these are related to clinicopathological features and prognosis.
基金the National Natural Science Foundation of China, No. 30872778/C1704the Natural Science Foundation of Beijing, No. 7072023+1 种基金the Clinical Basic Cooperation Foundation of Capital Medical University, No. 2009jl18the Clinical Basic Cooperation Foundation of Capital Medical University, No.11JL-L03
文摘To examine the expression profiles of oligodendrocyte transcription factors 1 and 2 (Oligl and Olig2) and the interaction between these two proteins, Oligl was transfected into the lateral ventricles of neonatal rats subjected to hypoxia. Immunohistochemistry demonstrated that Olig2 was expressed throughout the nuclei in the brain, and expression increased at 3 days following hypoxia and was higher than levels at 7 days following Ad5-Oligl transfection. Western blot revealed that Oligl and Olig2 expression increased in Oligl-transfected brain cells 3 days after hypoxia, but Oligl and Olig2 expression decreased at 7 days. These results indicate that Oligl overexpression enhances Olig2 expression in brain tissues of hypoxia rats.
基金Supported by National Natural Science Foundation of China,No. 81870264 and No. 81470546the Shanghai Committee of Science and Technology,No. 18411950500+1 种基金the Major Disease Joint Project of Shanghai Health System,No. 2014ZYJB0501Talent Cultivation Project of The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,No. JC202005
文摘BACKGROUND Extracellular vesicles(EVs)derived from hypoxia-preconditioned(HP)mesenchymal stem cells(MSCs)have better cardioprotective effects against myocardial infarction(MI)in the early stage than EVs isolated from normoxic(NC)-MSCs.However,the cardioprotective mechanisms of HP-EVs are not fully understood.AIM To explore the cardioprotective mechanism of EVs derived from HP MSCs.METHODS We evaluated the cardioprotective effects of HP-EVs or NC-EVs from mouse adipose-derived MSCs(ADSCs)following hypoxia in vitro or MI in vivo,in order to improve the survival of cardiomyocytes(CMs)and restore cardiac function.The degree of CM apoptosis in each group was assessed by the terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/PI assays.MicroRNA(miRNA)sequencing was used to investigate the functional RNA diversity between HP-EVs and NC-EVs from mouse ADSCs.The molecular mechanism of EVs in mediating thioredoxin-interacting protein(TXNIP)was verified by the dual-luciferase reporter assay.Co-immunoprecipitation,western blotting,and immunofluorescence were performed to determine if TXNIP is involved in hypoxia-inducible factor-1 alpha(HIF-1α)ubiquitination and degradation via the chromosomal region maintenance-1(CRM-1)-dependent nuclear transport pathway.RESULTS HP-EVs derived from MSCs reduced both infarct size(necrosis area)and apoptotic degree to a greater extent than NC-EVs from CMs subjected to hypoxia in vitro and mice with MI in vivo.Sequencing of EV-associated miRNAs showed the upregulation of 10 miRNAs predicted to bind TXNIP,an oxidative stress-associated protein.We showed miRNA224-5p,the most upregulated miRNA in HP-EVs,directly combined the 3’untranslated region of TXNIP and demonstrated its critical protective role against hypoxia-mediated CM injury.Our results demonstrated that MI triggered TXNIP-mediated HIF-1αubiquitination and degradation in the CRM-1-mediated nuclear transport pathway in CMs,which led to aggravated injury and hypoxia tolerance in CMs in the early stage of MI.CONCLUSION The anti-apoptotic effects of HP-EVs in alleviating MI and the hypoxic conditions of CMs until reperfusion therapy may partly result from EV miR-224-5p targeting TXNIP.
基金Supported by Grant from Fondazione Cariplo,No.2011-0439
文摘AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion. METHODS: in this study, we correlated hypoxia induciblefactor(Hi F)-1α expression to the perfusion temperature and the hepatic oxygen uptake in a model of isolated perfused rat liver. Livers from Wistar rats were perfused for 6 h with an oxygenated medium at 10, 20, 30 and 37 ℃. Oxygen uptake was measured by an oxygen probe; lactate dehydrogenase activity, lactate release and glycogen were measured spectrophotometrically; bile flow was gravitationally determined; p H of the perfusate was also evaluated; Hi F-1α m RNA and protein expression were analyzed by real time-polymerase chain reaction and ELi SA, respectively. RESULTS: Livers perfused at 10 and 20 ℃ showed no difference in lactate dehydrogenase release after 6 h of perfusion(0.96 ± 0.23 vs 0.93 ± 0.09 m U/min per g) and had lower hepatic damage as compared to 30 and 37 ℃(5.63 ± 0.76 vs 527.69 ± 45.27 m U/min per g, respectively, P s < 0.01). After 6 h, tissue ATP was significantly higher in livers perfused at 10 and 20 ℃than in livers perfused at 30 and 37 ℃(0.89 ± 0.06 and 1.16 ± 0.05 vs 0.57 ± 0.09 and 0.33 ± 0.08 nmol/mg, respectively, P s < 0.01). No sign of hypoxia was observed at 10 and 20 ℃, as highlighted by low lactate release respect to livers perfused at 30 and 37 ℃(121.4 ± 12.6 and 146.3 ± 7.3 vs 281.8 ± 45.3 and 1094.5 ± 71.7 nmol/m L, respectively, P s < 0.02), and low relative Hi F-1α m RNA(0.40 ± 0.08 and 0.20 ± 0.03 vs 0.60 ± 0.20 and 1.47 ± 0.30, respectively, P s < 0.05) and protein(3.72 ± 0.16 and 3.65 ± 0.06 vs 4.43 ± 0.41 and 6.44 ± 0.82, respectively, P s < 0.05) expression.CONCLUSION: Livers perfused at 10 and 20 ℃ show no sign of liver injury or anaerobiosis, in contrast to livers perfused at 30 and 37 ℃.
基金Supported by The Ministerio de de Sanidad y Consumo(PI081988)CIBER-EHD,Instituto Carlos Ⅲ,Madrid and Ministerio de Asuntos Exteriores y de Cooperación Internacionales(A/020255/08 and A/02987/09),Madrid
文摘AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model and we evaluated HIF-1αin steatotic and non-steatotic livers preserved for 24 h at 4℃in University of Wisconsin and IGL-1 solutions,and then subjected to 2 h of normothermic reperfusion.After normoxic reperfusion,liver enzymes,bile production,bromosulfophthalein clearance,as well as HIF-1αand NO[endothelial NO synthase(eNOS)activity and nitrites/nitrates]were also measured.Other factors associated with the higher susceptibility of steatotic livers to IRI,such as mitochondrial damage and vascular resistance were evaluated. RESULTS:A significant increase in HIF-1αwas found in steatotic and non-steatotic livers preserved in IGL-1 after cold storage.Livers preserved in IGL-1 showed a significant attenuation of liver injury and improvement in liver function parameters.These benefits were enhanced by the addition of trimetazidine(an antiischemic drug),which induces NO and eNOS activation, to IGL-1 solution.In normoxic reperfusion,the presence of NO favors HIF-1αaccumulation,promoting also the activation of other cytoprotective genes,such as hemeoxygenase-1. CONCLUSION:We found evidence for the role of the HIF-1α/NO system in fatty liver preservation,especially when IGL-1 solution is used.
基金Supported by The National Natural Science Foundation of ChinaNo.81330013 and No.81272078 to Yang H+2 种基金No.81270451 to Xiao WDthe Program for Changjiang Scholars and Innovative Research Team in UniversitiesNo.13051 to Yang H
文摘AIM: To investigate the roles and interactions of mut T homolog(MTH)-1 and hypoxia-inducible factor(HIF)-1α in human colorectal cancer(CRC).METHODS: The expression and distribution of HIF-1α and MTH-1 proteins were detected in human CRC tissues by immunohistochemistry and quantitative realtime polymerase chain reaction(q RT-PCR). SW480 and HT-29 cells were exposed to normoxia or hypoxia. Protein and m RNA levels of HIF-1α and MTH-1 were analyzed by western blotting and q RT-PCR, respectively. In order to determine the effect of HIF-1α on the expression of MTH-1 and the amount of 8-oxodeoxyguanosine triphosphate(d GTP) in SW480 and HT-29 cells, HIF-1α was silenced with small interfering RNA(si RNA). Growth studies were conducted on cells with HIF-1α inhibition using a xenograft tumor model. Finally, MTH-1 protein was detected by western blotting in vivo.RESULTS: High MTH-1 m RNA expression was detected in 64.2% of cases(54/84), and this was significantly correlated with tumor stage(P = 0.023) and size(P = 0.043). HIF-1α protein expression was correlated significantly with MTH-1 expression(R = 0.640; P < 0.01) in human CRC tissues. Hypoxic stress induced m RNA and protein expression of MTH-1 in SW480 and HT-29 cells. Inhibition of HIF-1α by si RNA decreased the expression of MTH-1 and led to the accumulation of 8-oxo-d GTP in SW480 and HT-29 cells. In the in vivo xenograft tumor model, expression of MTH-1 was decreased in the HIF-1α si RNA group, and the tumor volume was much smaller than that in the mock si RNA group.CONCLUSION: MTH-1 expression in CRC cells was upregulated via HIF-1α in response to hypoxic stress, emphasizing the crucial role of HIF-1α-induced MTH-1 in tumor growth.
基金Supported by National Natural Science Foundation of China,No. 82070609
文摘BACKGROUND The occurrence and development of acute liver failure(ALF)is closely related to a series of inflammatory reactions,such as the production of reactive oxygen species(ROS).Hypoxia inducible factor 1α(HIF-1α)is a key factor that regulates oxygen homeostasis and redox,and the stability of HIF-1αis related to the ROS level regulated by Sirtuin(Sirt)family.The activation of Sirt1 will lead to a powerful antioxidant defense system and therapeutic effects in liver disease.However,little is known about the relationship between HIF-1αand Sirt1 in the process of ALF and the molecular mechanism.AIM To investigate whether HIF-1αmay be a target of Sirt1 deacetylation and what the effects on ALF are.METHODS Mice were administrated lipopolysaccharide(LPS)/D-gal and exposed to hypoxic conditions as animal model,and resveratrol was used as an activator of Sirt1.The cellular model was established with L02 cells stimulated by LPS.N-acetyl-Lcysteine was used to remove ROS,and the expression of Sirt1 was inhibited by nicotinamide.Western blotting was used to detect Sirt1 and HIF-1αactivity and related protein expression.The possible signaling pathways involved were analyzed by immunofluorescent staining,co-immunoprecipitation,dihydroethidium staining,and Western blotting.RESULTS Compared with mice stimulated with LPS alone,the expression of Sirt1 decreased,the level of HIF-1αacetylation increased in hypoxic mice,and the levels of carbonic anhydrase 9 and Bcl-2-adenovirus E1B interacting protein 3 increased significantly,which was regulated by HIF-1α,indicating an increase of HIF-1αactivity.Under hypoxia,the down-regulation of Sirt1 activated and acetylated HIF-1αin L02 cells.The inhibition of Sirt1 significantly aggravated this effect and the massive production of ROS.The regulation of ROS was partly through peroxisome proliferatoractivated receptor alpha or AMP-activated protein kinase.Resveratrol,a Sirt1 activator,effectively relieved ALF aggravated by hypoxia,the production of ROS,and cell apoptosis.It also induced the deacetylation of HIF-1αand inhibited the activity of HIF-1α.CONCLUSION Sirt1 may have a protective effect on ALF by inducing HIF-1α deacetylation to reduce ROS.
基金supported by grants from VA merit awards(BX3401 and RX2090)
文摘Mild traumatic brain injury(TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide(NO), the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha(HIF-1α), a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione(GSNO) and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.
文摘BACKGROUND: Excessive alcohol consumption can result in multiple organ injury, of which alcoholic liver disease (ALD) is the most common. With economic development and improvement of living standards, the incidence of diseases caused by alcohol abuse has been increasing in China, although its pathogenesis remains obscure. The aim of this study was to investigate the role of hypoxia in chronic ALD. METHODS: Twenty-eight male Sprague-Dawley rats were randomized into a control group (n=12) with a normal history and an experimental group (n=16) fed with 10 ml/ kg of 56% (vol/vol) ethanol once per day by gastric lavage for 24 weeks. At 24 weeks, blood samples were collected and then the rats were killed. Liver samples were frozen at -80 ℃ and used for RT-PCR; other liver samples were obtained for immunohistochemical staining. RESULTS: When the period of alcohol consumption increased, the positive rate of expression of hypoxia- inducible factor-1 alpha (HIF-1α) mRNA was more significantly elevated in the liver of the alcohol group than in the control group (P≤0.05). The HIF-1α protein located in the cytoplasm was seldom expressed in the control group, but significantly in the alcohol group (P≤0.01). CONCLUSION: HIF-1α mRNA expression was activated by ethanol-induced injury in this study, suggesting that hypoxia is involved in the underlying mechanism of ALD.
基金the National Natural Science Foundation of China,No.81670600.
文摘BACKGROUND Ischemia-reperfusion injury(IRI) is a major risk associated with liver surgery and transplantation,and its pathological mechanism is complex.Interleukin-1 receptor antagonist(IL-1ra) can protect the liver from IRI.However,the regulatory mechanism of IL-1ra expression is still unclear.AIM To identify the mechanism that could protect the liver in the early stage of IRI.METHODS To screen the key genes in hepatic IRI,we performed RNA sequencing and gene enrichment analysis on liver tissue from mice with hepatic IRI.Subsequently,we verified the expression and effect of IL-1ra in hepatic IRI.We also used promoter mutagenesis and chromatin immunoprecipitation assay to search for the transcriptional regulatory sites of hypoxia-inducible factor(HIF)-1α.Finally,to explore the protective mechanism of ischemic preconditioning(IP),we examined the expression of HIF-1α and IL-1ra after IP.RESULTS We identified IL-1ra as a key regulator in hepatic IRI.The expression of IL-1ra was significantly upregulated after hepatic IRI both in vivo and in vitro.Furthermore,we found that HIF-1αregulated Il-1ra transcription in response to hypoxia.Increased HIF-1α accumulation promoted IL-1ra expression,whereas inhibition of HIF-1α exhibited the opposite effect.We also confirmed a predominant role for hypoxia response element in the regulation of Il1ra transcription by HIF-1αactivation.Of note,we demonstrated that IP protects against hepatic IRI by inducing IL-1ra expression,which is mediated through HIF-1α.CONCLUSION We demonstrated that ischemia or hypoxia leads to increased expression of IL-1ra through HIF-1α.Importantly,IP protects the liver from IRI via the HIF-1α–IL-1ra pathway.
基金supported by the National Natural Science Foundation of China(No.81070067)
文摘The effects of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin on the enhanced hypoxia induced factor-let (HIF-lct) and endothelin-1 (ET-1) expression, elevated systolic blood pressure under chronic intermittent hypoxia (CIH) condition and its action mechanism were investigated. Thirty healthy 8-week old Sprague-Dawley (SD) male rats were randomly divided into three groups (n=10 each): sham group, CIH group, and apocynin-treated CIH group. Tail artery systolic blood pressure was measured by tail-cuff method. Real-time fluorescence quantitative polymerase chain reaction (PCR) was used to detect the mRNA expression of HIF-lu and ET-1 in the carotid body, and the HIF-1a protein expression was examined by using Western blotting. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were determined by using colorimetric method. In addition, the plasma ET-1 and HIF-1a levels were measured by using enzyme-linked immunosorbent assay. It was found that CIH exposure was associated with increased MDA levels, and apo- cynin-treated CIH animals showed reduction in MDA levels. Apocynin treatment prevented CIH-induced hypertension as well as CIH-induced decrease in SOD. The increases of HIF-1a and ET-1 mRNA along with HIF-la protein expression in the carotid body, and elevated circulating HIF-1a and ET-1 levels were observed in CIH-exposed animals. Treatment with apocynin significantly decreased the ET-1 mRNA, HIF-lct protein expression and circulating HIF-la level in CIH-exposed animals, and there was no statistically significant difference in the HIF-lu mRNA expression between CIH group and apo- cynin-treated group. These results indicated that apocynin alleviated CIH-induced hypertension by inhibiting NADPH oxidase, further leading to the reduced vasoconstrictor ET-1 level and oxidative stress. HIF-1a/ET-1 system signal pathway may interact with CIH-induced NADPH oxidase-dependent oxidative stress. Inhibition of NADPH oxidase activity may hopefully serve as a useful strategy for prevention and treatment of obstructive sleep apnea hypopnea syndrome-induced hypertension.
基金Stem Cell and Translational Research from the National Key Research and Development Program of China,No.2020YFA0113003National Natural Science Foundation of China, No. 81971756.
文摘BACKGROUND As human placenta-derived mesenchymal stem cells(hP-MSCs)exist in a physiologically hypoxic microenvironment,various studies have focused on the influence of hypoxia.However,the underlying mechanisms remain to be further explored.AIM The aim was to reveal the possible mechanisms by which hypoxia enhances the proliferation of hP-MSCs.METHODS A hypoxic cell incubator(2.5%O2)was used to mimic a hypoxic microenvironment.Cell counting kit-8 and 5-ethynyl-20-deoxyuridine incorporation assays were used to assay the proliferation of hP-MSCs.The cell cycle was profiled by flow cytometry.Transcriptome profiling of hP-MSCs under hypoxia was performed by RNA sequencing.CD99 mRNA expression was assayed by reverse transcription-polymerase chain reaction.Small interfering RNA-mediated hypoxia-inducible factor 1α(HIF-1α)or CD99 knockdown of hP-MSCs,luciferase reporter assays,and the ERK1/2 signaling inhibitor PD98059 were used in the mechanistic analysis.Protein expression was assayed by western blotting;immunofluorescence assays were conducted to evaluate changes in expression levels.RESULTS Hypoxia enhanced hP-MSC proliferation,increased the expression of cyclin E1,cyclin-dependent kinase 2,and cyclin A2,and decreased the expression of p21.Under hypoxia,CD99 expression was increased by HIF-1α.CD99-specific small interfering RNA or the ERK1/2 signaling inhibitor PD98059 abrogated the hypoxia-induced increase in cell proliferation.CONCLUSION Hypoxia promoted hP-MSCs proliferation in a manner dependent on CD99 regulation of the MAPK/ERK signaling pathway in vitro.
基金supported by grants from National Natural Sciences Foundation of China (No 30970804)863 Na-tional High Technology Research and Development Program of China (No 2006AA03Z332)
文摘To examine the effect of transcatheter arterial embolization (TAE) of liver tumors on hypoxia-inducible factor-1α (HIF-1α) expression in the residual viable tumor, a total of 30 New Zealand White rabbits implanted with VX2 liver tumor were divided into 2 groups. TAE-treated group animals (n=15) were subjected to TAE with 150–250 μm polyvinyl alcohol particles. Control group animals (n=15) underwent sham embolization with distilled water. Six hours, 3 days or 7 days after TAE, the animals were sacrificed, and samples of tumor and adjacent normal liver tissue were harvested. Expression of HIF-1α protein was examined immunohistochemically. Real-time PCR was performed to examine the HIF-1α mRNA levels. Our results showed that HIF-1α protein was expressed in the VX2 tumors but not in the adjacent normal liver tissue. The HIF-1α-positive tumor cells were located predominantly at the periphery of necrotic tumor regions. The mean levels of HIF-1α protein were significantly higher in TAE-treated tumors than those in control tumors (P=0.002). Among the three sacrificing time points, the difference in increase in HIF-1α protein was significant between the two groups at the sacrificing time point of 6 h and 3 days after TAE (P=0.020, P=0.031, respectively), whereas no significant increase was noted 7 days after TAE (P=0.502). In contrast, although HIF-1α mRNA was expressed in TAE-treated and control VX2 tumors, there existed no significant difference in the HIF-1α mRNA level between the two groups (P=0.372). It is concluded that TAE of liver tumors increases the expression of HIF-1α at protein level in the residual viable tumor, which could be attributed to hypoxia generated by the procedure.