期刊文献+
共找到75,218篇文章
< 1 2 250 >
每页显示 20 50 100
Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the antiferroptosis system:based on a novel rat model 被引量:3
1
作者 Tian-Lei Zhang Zhi-Wei Zhang +6 位作者 Wei Lin Xin-Ru Lin Ke-Xin Lin Ming-Chu Fang Jiang-Hu Zhu Xiao-Ling Guo Zhen-Lang Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2229-2236,共8页
Hypoxic-ischemic encephalopathy,which predisposes to neonatal death and neurological sequelae,has a high morbidity,but there is still a lack of effective prevention and treatment in clinical practice.To better underst... Hypoxic-ischemic encephalopathy,which predisposes to neonatal death and neurological sequelae,has a high morbidity,but there is still a lack of effective prevention and treatment in clinical practice.To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy,in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats.First,based on the conventional RiceVannucci model of hypoxic-ischemic encephalopathy,we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge.Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins.We also performed transmission electron microscopy and found typical characteristics of ferroptosis,including mitochondrial shrinkage,ruptured mitochondrial membranes,and reduced or absent mitochondrial cristae.Further,both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein,which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage.Finally,we found that ferroptosis-related Ferritin(Fth1)and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury.Based on these results,it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion.Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system. 展开更多
关键词 ferroptosis hypoxic-ischemic brain injury hypoxic-ischemic encephalopathy hypoxic-ischemic reperfusion brain injury mitochondria model proteomic analysis REPERFUSION Rice-Vannucci transmission electron microscopy
下载PDF
Effects of exogenous ganglioside-1 on learning and memory in a neonatal rat model of hypoxia-ischemia brain injury
2
作者 Shizhi Li Nong Xiao +5 位作者 Xiaoping Zhang Ling Liu Liyun Lin Siyuan Chen Yuxia Chen Bei Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第9期1004-1009,共6页
BACKGROUND: Exogenous ganglioside-1 (GM1) can cross the blood-brain barrier and play a protective role against hypoxia-ischemia-induced brain damage. OBJECTIVE: To examine the possible mechanisms of exogenous GM1 ... BACKGROUND: Exogenous ganglioside-1 (GM1) can cross the blood-brain barrier and play a protective role against hypoxia-ischemia-induced brain damage. OBJECTIVE: To examine the possible mechanisms of exogenous GM1 protection in hypoxia-ischemia-induced brain damage in a neonatal rat model by measuring changes in brain mass, pathological morphology, growth-associated protein-43 expression, and neurobehavioral manifestations. DESIGN, TIME AND SETTING: A randomized block-design study was performed at the Immunohistochemistry Laboratory of the Pediatric Research Institute, Children's Hospital of Chongqing Medical University from August 2005 to August 2006. MATERIALS: A total of 36 neonatal, 7-day-old, Sprague Dawley rats were used in this experiment. The hypoxia-ischemia-induced brain damage model was established by permanently occluding the right carotid artery, followed by oxygen inhalation at a low concentration (8% O2, 92% N2) for 2 hours, METHODS: All rats were randomly divided into the following groups: GMI, model, and sham operation, with 12 rats each group. Rats in the GM 1 and model groups received hypoxic/ischemic-induced brain damage. Rats in the GM1 group received injections of GM1 (i.p., 20 mg/kg) at 0, 24, 48, 72, 96, 120, and 144 hours following models established, and rats in the model group were administered (i.p.) the same amount of saline. The right carotid artery was separated, but not ligated, in the sham operation group rats. MAIN OUTCOME MEASURES: At 1 week after surgery, expression of growth-associated protein-43, a marker of neural development and plasticity, was detected in the hippocampal CA3 region by immunohistochemistry. Brain mass was measured, and the pathological morphology was observed. At 4 weeks after surgery, behavioral changes in the remaining rats were tested by Morris water maze, and growth-associated protein-43 expression was measured. RESULTS: (1) In the GMI and sham operation groups, growth-associated protein-43 expression was greater in the hippocampal CA3 region compared to the model group 1 week after surgery (P 〈 0.05). In all three groups, brain weight of the right hemisphere was significantly less than the left hemisphere, in particular in the model group (P 〈 0.05). In the GMI group, the weight difference between two hemispheres, as well as the extent of damage in the right hemisphere, was less than the model group (P 〈 0.01 ). In the sham operation Uoup, brain tissue consisted of integrated structures and ordered cells. In the model group, the cerebral cortex layers of the right hemisphere were not defined, neurons were damaged, and neurons were disarranged in the hippocampal area. In the GM1 group, neurons were dense in the right cerebral cortex and hippocampal area, with no significant change in glial proliferation. (2) The average time of escape latency in the GM1 group was shortened 4 weeks alter surgery, and significantly less than the model group (P 〈 0.05). In addition, the frequency platform passing in the GMI group was significantly greater than the model group (P 〈 0.01). CONCLUSION: Exogenous GM1 may reduce brain injury and improve learning and memory in hypoxia-ischemia-induced brain damage rats. This protection may be associated with increased growth-associated protein-43 expression, which is involved in neuronal remodeling processes. 展开更多
关键词 GANGLIOSIDE growth-associated protein-43 hypoxia-ischemia brain damage Morris water maze
下载PDF
Hypoxia-ischemia in the immature rodent brain impairs serotonergic neuronal function in certain dorsal raphé nuclei
3
作者 Hanna E.Reinebrant Julie A.Wixey Kathryn M.Buller 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第3期457-463,共7页
Neonatal hypoxia-ischemia(HI) results in losses of serotonergic neurons in specific dorsal raphé nuclei. However, not all serotonergic raphé neurons are lost and it is therefore important to assess the funct... Neonatal hypoxia-ischemia(HI) results in losses of serotonergic neurons in specific dorsal raphé nuclei. However, not all serotonergic raphé neurons are lost and it is therefore important to assess the function of remaining neurons in order to understand their potential to contribute to neurological disorders in the HI-affected neonate. The main objective of this study was to determine how serotonergic neurons, remaining in the dorsal raphé nuclei after neonatal HI, respond to an external stimulus(restraint stress). On postnatal day 3(P3), male rat pups were randomly allocated to one of the following groups:(i) control + no restraint(n = 5),(ii) control + restraint(n = 6),(iii) P3 HI + no restraint(n = 5) or(iv) P3 HI + restraint(n = 7). In the two HI groups, rat pups underwent surgery to ligate the common carotid artery and were then exposed to 6% O2 for 30 minutes. Six weeks after P3 HI, on P45, rats were subjected to restraint stress for 30 minutes. Using dual immunolabeling for Fos protein, a marker for neuronal activity, and serotonin(5-hydroxytrypamine; 5-HT), numbers of Fos-positive 5-HT neurons were determined in five dorsal raphé nuclei. We found that restraint stress alone increased numbers of Fos-positive 5-HT neurons in all five dorsal raphé nuclei compared to control animals. However, following P3 HI, the number of stress-induced Fos-positive 5-HT neurons was decreased significantly in the dorsal raphé ventrolateral, interfascicular and ventral nuclei compared with control animals exposed to restraint stress. In contrast, numbers of stress-induced Fos-positive 5-HT neurons in the dorsal raphé dorsal and caudal nuclei were not affected by P3 HI. These data indicate that not only are dorsal raphé serotonergic neurons lost after neonatal HI, but also remaining dorsal raphé serotonergic neurons have reduced differential functional viability in response to an external stimulus. Procedures were approved by the University of Queensland Animal Ethics Committee(UQCCR958/08/NHMRC) on February 27, 2009. 展开更多
关键词 dorsal raphé nuclei Fos hypoxia-ischemia NEONATE newborn brain injury PRETERM restraint stress serotonin
下载PDF
Influence of hypoxia-inducible factor 1-alpha on neuronal apoptosis in a rat model of hypoxia-or hypoxia-ischemia-induced brain injury 被引量:2
4
作者 Lihua Li Yi Qu +5 位作者 Li Zhang Xihong Li Jinhui Li Meng Mao Xiudong Jin Dezhi Mu 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第12期1019-1023,共5页
BACKGROUND: In addition to neuroprotective genes, the targeted genes of hypoxia-inducible factor 1α (HIF-1α) include pro-apoptotic genes. However, the influence of HIF-1α on neuronal apoptosis in hypoxia-ischemi... BACKGROUND: In addition to neuroprotective genes, the targeted genes of hypoxia-inducible factor 1α (HIF-1α) include pro-apoptotic genes. However, the influence of HIF-1α on neuronal apoptosis in hypoxia-ischemia remains poorly understood. OBJECTIVE: To investigate the relationship between HIF-1α expression and neuronal apoptosis in hypoxia or hypoxia-ischemia brain injury and to determine the role of HIF-1α in regulating neuronal apoptosis. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed at the Laboratory of Children Neurology of Sichuan University between May 2006 and May 2007. MATERIALS: In situ cell death detected kit was provided by Roche, USA; rabbit anti-mouse HIF-1α polyclonal antibody was purchased from Santa Cruz Biotechnologies, USA; rabbit anti-mouse cleaved caspase-3 polyclonal antibody was purchased from Chemicon, USA. METHODS: A total of 36 Sprague Dawley rats aged 10 days were randomly assigned to 3 groups: sham-surgery, hypoxia, and hypoxia-ischemia, with 12 rats per group. The rats were treated at 3 time points: 4, 8, and 24 hours, with 4 rats per time point. In the hypoxia-ischemia group, the right common carotid artery was exposed and permanently ligated through a midline cervical incision. A 2.5-hour exposure to hypoxia (8% O2/92% N2) was used to induce hypoxia-ischemia injury. In the hypoxia group, rats were exposed to hypoxia without ligation of the common carotid artery. In the sham-surgery group, the common carotid artery was exposed without ligation or hypoxia. MAIN OUTCOME MEASURES: Histopathological changes, HIF-1α and activated caspase-3 protein expression, integrated optical density of positive cells, and apoptosis-positive cells. RESULTS: Hematoxylin and eosin staining showed that neuronal degeneration and edema was most prominent at 24 hours after hypoxia-ischemia. HIF-1α protein expression was significantly upregulated at 4 hours, peaked at 8 hours, and decreased at 24 hours after hypoxia or hypoxia-ischemia. HIF-1α protein expression was significant greater in the hypoxia and hypoxia-ischemia groups compared with the sham-surgery group (P 〈 0.01). Activated caspase-3 protein expression began to increase at 4 and 8 hours following hypoxia or hypoxia-ischemia and was significantly upregulated at 24 hours. Activated caspase-3 protein expression remained at low levels in the sham controls compared with the hypoxia and hypoxia-ischemia groups (P〈 0.01). TUNEL staining showed that the number of apoptotic cells significantly increased at 24 hours after hypoxia or hypoxia-ischemia. In addition, HIF-1α protein expression was greater in the hypoxia group compared with the hypoxia-ischemia group at the same time point (P 〈 0.05). However, activated caspase-3 expression and the number of TUNEL-positive cells were less in the hypoxia group compared with the hypoxia-ischemia group at the same time point (P〈 0.05). CONCLUSION: HIF-1α played a neuroprotective role following hypoxia-ischemia brain injury. 展开更多
关键词 HIF-1Α APOPTOSIS HYPOXIA ISCHEMIA brain damage
下载PDF
Neuroprotective effects of autophagy inhibition on hippocampal glutamate receptor subunits after hypoxia-ischemia-induced brain damage in newborn rats 被引量:14
5
作者 Li-xiao Xu Xiao-juan Tang +8 位作者 Yuan-yuan Yang Mei Li Mei-fang Jin Po Miao Xin Ding Ying Wang Yan-hong Li Bin Sun Xing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期417-424,共8页
Autophagy has been suggested to participate in the pathology of hypoxic-ischemic brain damage(HIBD).However,its regulatory role in HIBD remains unclear and was thus examined here using a rat model.To induce HIBD,the... Autophagy has been suggested to participate in the pathology of hypoxic-ischemic brain damage(HIBD).However,its regulatory role in HIBD remains unclear and was thus examined here using a rat model.To induce HIBD,the left common carotid artery was ligated in neonatal rats,and the rats were subjected to hypoxia for 2 hours.Some of these rats were intraperitoneally pretreated with the autophagy inhibitor 3-methyladenine(10 m M in 10 μL) or the autophagy stimulator rapamycin(1 g/kg) 1 hour before artery ligation.Our findings demonstrated that hypoxia-ischemia-induced hippocampal injury in neonatal rats was accompanied by increased expression levels of the autophagy-related proteins light chain 3 and Beclin-1 as well as of the AMPA receptor subunit GluR 1,but by reduced expression of GluR 2.Pretreatment with the autophagy inhibitor 3-methyladenine blocked hypoxia-ischemia-induced hippocampal injury,whereas pretreatment with the autophagy stimulator rapamycin significantly augmented hippocampal injury.Additionally,3-methyladenine pretreatment blocked the hypoxia-ischemia-induced upregulation of Glu R1 and downregulation of GluR2 in the hippocampus.By contrast,rapamycin further elevated hippocampal Glu R1 levels and exacerbated decreased GluR2 expression levels in neonates with HIBD.Our results indicate that autophagy inhibition favors the prevention of HIBD in neonatal rats,at least in part,through normalizing Glu R1 and GluR2 expression. 展开更多
关键词 nerve regeneration hypoxic-ischemic brain damage hypoxia ischemia α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit GluR hippocampus RAPAMYCIN 3-methyladenine neural regeneration
下载PDF
Hypidone hydrochloride(YL-0919)ameliorates functional deficits after traumatic brain injury in mice by activating the sigma-1 receptor for antioxidation 被引量:1
6
作者 Yafan Bai Hui Ma +5 位作者 Yue Zhang Jinfeng Li Xiaojuan Hou Yixin Yang Guyan Wang Yunfeng Li 《Neural Regeneration Research》 SCIE CAS 2025年第8期2325-2336,共12页
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0... Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury. 展开更多
关键词 antidepressant drug blood-brain barrier cognitive function hypidone hydrochloride(YL-0919) neurological function nuclear factor-erythroid 2 related factor 2 oxidative stress sigma-1 receptor superoxide dismutase traumatic brain injury
下载PDF
Understanding the link between type 2 diabetes mellitus and Parkinson's disease:role of brain insulin resistance
7
作者 Theodora Ntetsika Sergiu-Bogdan Catrina Ioanna Markaki 《Neural Regeneration Research》 SCIE CAS 2025年第11期3113-3123,共11页
Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close rel... Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed. 展开更多
关键词 brain insulin resistance brain insulin signaling diabetes type 2 GLP-1 receptor agonists GLP-1 signaling insulin resistance insulin signaling NEURODEGENERATION Parkinson's disease targeted therapy
下载PDF
Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury
8
作者 Xinyu You Lin Niu +4 位作者 Jiafeng Fu Shining Ge Jiangwei Shi Yanjun Zhang Pengwei Zhuang 《Neural Regeneration Research》 SCIE CAS 2025年第8期2153-2168,共16页
Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for pati... Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.” 展开更多
关键词 traumatic brain injury brain-gut-microbiome axis gut microbiota NEUROIMMUNE immunosuppression host defense vagal afferents bacterial infection dorsal root ganglia nociception neural circuitry
下载PDF
Treadmill exercise in combination with acousto-optic and olfactory stimulation improves cognitive function in APP/PS1 mice through the brain-derived neurotrophic factor-and Cygb-associated signaling pathways 被引量:1
9
作者 Biao Xiao Chaoyang Chu +6 位作者 Zhicheng Lin Tianyuan Fang Yuyu Zhou Chuxia Zhang Jianghui Shan Shiyu Chen Liping Li 《Neural Regeneration Research》 SCIE CAS 2025年第9期2706-2726,共21页
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati... A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease. 展开更多
关键词 acousto-optic stimulation adult neurogenesis Alzheimer's disease amyloid precursor protein/presenilin 1 mice amyloid-beta deposition brain cell apoptosis cognitive impairment depression-like behavior involuntary treadmill exercise olfactory stimulation serum metabolites
下载PDF
Beyond wrecking a wall:revisiting the concept of blood–brain barrier breakdown in ischemic stroke
10
作者 Julia Castillo-González Elena González-Rey 《Neural Regeneration Research》 SCIE CAS 2025年第7期1944-1956,共13页
The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting... The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting the entry of harmful factors,and selectively limiting the migration of immune cells,thereby maintaining brain homeostasis.Despite the well-established association between blood–brain barrier disruption and most neurodegenerative/neuroinflammatory diseases,much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown.Moreover,the role of blood–brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood.This review aims to revisit this concept of“blood–brain barrier breakdown,”delving into the most controversial aspects,prevalent challenges,and knowledge gaps concerning the lack of blood–brain barrier integrity.By moving beyond the oversimplistic dichotomy of an“open”/“bad”or a“closed”/“good”barrier,our objective is to provide a more comprehensive insight into blood–brain barrier dynamics,to identify novel targets and/or therapeutic approaches aimed at mitigating blood–brain barrier dysfunction.Furthermore,in this review,we advocate for considering the diverse time-and location-dependent alterations in the blood–brain barrier,which go beyond tight-junction disruption or brain endothelial cell breakdown,illustrated through the dynamics of ischemic stroke as a case study.Through this exploration,we seek to underscore the complexity of blood–brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases. 展开更多
关键词 blood–brain barrier disruption drug delivery ischemic stroke NEUROINFLAMMATION tight-junctions
下载PDF
Near-infrared brain functional characteristics of mild cognitive impairment with sleep disorders
11
作者 Heng Liao Sha Liao +5 位作者 Yu-Jiao Gao Xi Wang Li-Hong Guo Su Zheng Wu Yang Yi-Nan Dai 《World Journal of Psychiatry》 SCIE 2025年第1期106-116,共11页
BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patie... BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patients with MCI is unclear.AIM To explore the near-infrared brain function characteristics of MCI with sleep disorders.METHODS A total of 120 patients with MCI(MCI group)and 50 healthy subjects(control group)were selected.All subjects underwent the functional near-infrared spec-troscopy test.Collect baseline data,Mini-Mental State Examination,Montreal Cognitive Assessment scale,fatigue severity scale(FSS)score,sleep parameter,and oxyhemoglobin(Oxy-Hb)concentration and peak time of functional near-infrared spectroscopy test during the task period.The relationship between Oxy-RESULTS Compared with the control group,the FSS score of the MCI group was higher(t=11.310),and the scores of Pittsburgh sleep quality index,sleep time,sleep efficiency,nocturnal sleep disturbance,and daytime dysfunction were higher(Z=-10.518,-10.368,-9.035,-10.661,-10.088).Subjective sleep quality and total sleep time scores were lower(Z=-11.592,-9.924).The sleep efficiency of the MCI group was lower,and the awakening frequency,rem sleep latency period,total sleep time,and oxygen desaturation index were higher(t=5.969,5.829,2.887,3.003,5.937).The Oxy-Hb concentration at T0,T1,and T2 in the MCI group was lower(t=14.940,11.280,5.721),and the peak time was higher(t=18.800,13.350,9.827).In MCI patients,the concentration of Oxy-Hb during T0 was negatively correlated with the scores of Pittsburgh sleep quality index,sleep time,total sleep time,and sleep efficiency(r=-0.611,-0.388,-0.563,-0.356).It was positively correlated with sleep efficiency and total sleep time(r=0.754,0.650),and negatively correlated with oxygen desaturation index(r=-0.561)and FSS score(r=-0.526).All comparisons were P<0.05.CONCLUSION Patients with MCI and sleep disorders have lower near-infrared brain function than normal people,which is related to sleep quality.Clinically,a comprehensive assessment of the near-infrared brain function of patients should be carried out to guide targeted treatment and improve curative effect. 展开更多
关键词 MILD Cognitive impairment Sleep disorders NEAR-INFRARED brain functional CHARACTERISTICS
下载PDF
Decoding molecular mechanisms:brain aging and Alzheimer's disease
12
作者 Mahnoor Hayat Rafay Ali Syed +9 位作者 Hammad Qaiser Mohammad Uzair Khalid Al-Regaiey Roaa Khallaf Lubna Abdullah Mohammed Albassam Imdad Kaleem Xueyi Wang Ran Wang Mehwish SBhatti Shahid Bashir 《Neural Regeneration Research》 SCIE CAS 2025年第8期2279-2299,共21页
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a... The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease brain aging cognitive health DEMENTIA molecular mechanisms neuronal activity NEUROPLASTICITY NEUROTRANSMISSION
下载PDF
A new horizon for neuroscience:terahertz biotechnology in brain research
13
作者 Zhengping Pu Yu Wu +2 位作者 Zhongjie Zhu Hongwei Zhao Donghong Cui 《Neural Regeneration Research》 SCIE CAS 2025年第2期309-325,共17页
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot... Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages. 展开更多
关键词 biological effect brain NEURON NEUROPSYCHIATRY NEUROSCIENCE non-thermal effect terahertz imaging terahertz radiation terahertz spectroscopy terahertz technology
下载PDF
Unraveling brain aging through the lens of oral microbiota
14
作者 Qinchao Hu Si Wang +2 位作者 Weiqi Zhang Jing Qu Guang-Hui Liu 《Neural Regeneration Research》 SCIE CAS 2025年第7期1930-1943,共14页
The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even... The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even affect systemic health,including brain aging and neurodegenerative diseases.Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration,indicating potential avenues for intervention strategies.In this review,we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases,and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration.We also highlight advances in therapeutic development grounded in the realm of oral microbes,with the goal of advancing brain health and promoting healthy aging. 展开更多
关键词 Alzheimer's disease brain aging multiple sclerosis NEURODEGENERATION neurodegenerative diseases oral microbiota Parkinson's disease PERIODONTITIS BACTERIA Porphyromonas gingivalis
下载PDF
Repetitive traumatic brain injury–induced complement C1–related inflammation impairs long-term hippocampal neurogenesis
15
作者 Jing Wang Bing Zhang +9 位作者 Lanfang Li Xiaomei Tang Jinyu Zeng Yige Song Chao Xu Kai Zhao Guoqiang Liu Youming Lu Xinyan Li Kai Shu 《Neural Regeneration Research》 SCIE CAS 2025年第3期821-835,共15页
Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In ... Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction. 展开更多
关键词 complement C1 dendrite dentate gyrus hippocampus neural stem cell NEUROGENESIS NEUROINFLAMMATION neurological function neuron traumatic brain injury
下载PDF
Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease
16
作者 Gabriela Seplovich Yazan Bouchi +8 位作者 Juan Pablo de Rivero Vaccari Jennifer C.Munoz Pareja Andrew Reisner Laura Blackwell Yehia Mechref Kevin K.Wang J.Adrian Tyndall Binu Tharakan Firas Kobeissy 《Neural Regeneration Research》 SCIE CAS 2025年第6期1644-1664,共21页
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela ... Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasomedependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline. 展开更多
关键词 Alzheimer's disease caspase-1 chronic traumatic encephalopathy INFLAMMASOMES NEURODEGENERATION neuroinflammation NLRP1 NLRP3 PYROPTOSIS TAUOPATHY traumatic brain injury
下载PDF
High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury
17
作者 Mengshi Yang Miao Bai +10 位作者 Yuan Zhuang Shenghua Lu Qianqian Ge Hao Li Yu Deng Hongbin Wu Xiaojian Xu Fei Niu Xinlong Dong Bin Zhang Baiyun Liu 《Neural Regeneration Research》 SCIE CAS 2025年第9期2611-2623,共13页
Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-i... Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway. 展开更多
关键词 apoptosis BV2 microglia DEXAMETHASONE glucocorticoid receptor GLUCOCORTICOIDS innate immune system microglial polarization neuroinflammation primary microglia traumatic brain injury
下载PDF
The Citron homology domain of MAP4Ks improves outcomes of traumatic brain injury
18
作者 Xiaoling Zhong Wenjiao Tai +4 位作者 Meng-Lu Liu Shuaipeng Ma Tianjin Shen Yuhua Zou Chun-Li Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3233-3244,共12页
The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to b... The mitogen-activated protein kinase kinase kinase kinases(MAP4Ks)signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults.Whether targeting this pathway is beneficial to brain injury remains unclear.In this study,we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis,tauopathy,lesion size,and behavioral deficits.Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain.Mechanistically,the Citron homology domain acted as a dominant-negative mutant,impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway.These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury. 展开更多
关键词 adeno-associated virus Citron homology Citron homology domain gene therapy mitogen-activated protein kinase kinase kinase kinases traumatic brain injury
下载PDF
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
19
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
下载PDF
Non-coding RNAs in acute ischemic stroke:from brain to periphery
20
作者 Shuo Li Zhaohan Xu +7 位作者 Shiyao Zhang Huiling Sun Xiaodan Qin Lin Zhu Teng Jiang Junshan Zhou Fuling Yan Qiwen Deng 《Neural Regeneration Research》 SCIE CAS 2025年第1期116-129,共14页
Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic ... Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined.With innovations in high-throughput gene sequencing analysis,many aberrantly expressed non-coding RNAs(ncRNAs)in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models.Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes,leading to neuroprotection or deterioration,thus ncRNAs can serve as therapeutic targets in acute ischemic stroke.Moreover,distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.In particular,ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke.In this review,we consolidate the latest progress of research into the roles of ncRNAs(microRNAs,long ncRNAs,and circular RNAs)in the pathological processes of acute ischemic stroke–induced brain damage,as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke. 展开更多
关键词 acute ischemic stroke apoptosis blood–brain barrier damage circular RNAs excitatory toxicity long non-coding RNAs MICRORNAS NEUROINFLAMMATION non-coding RNAs oxidative stress
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部