The hysteresis of magnetoresistance observed in superconductors is of great interest due to its potential connectionwith unconventional superconductivity.In this study,we perform electrical transport measurements on k...The hysteresis of magnetoresistance observed in superconductors is of great interest due to its potential connectionwith unconventional superconductivity.In this study,we perform electrical transport measurements on kagome superconductorCsV_(3)Sb_(5)nanoflakes and uncover unusual hysteretic behavior of magnetoresistance in the superconducting state.This hysteresis can be induced by applying either a large DC or AC current at temperatures(T)well below the superconductingtransition temperature(T_(c)).As T approaches T_(c),similar weak hysteresis is also detected by applying a smallcurrent.Various scenarios are discussed,with particular focus on the effects of vortex pinning and the presence of timereversal-symmtery-breaking superconducting domains.Our findings support the latter,hinting at chiral superconductivityin kagome superconductors.展开更多
Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect...Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect,low hysteresis,and high reversibility on phase transformation was very active in recent years.Here,we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment,with very low stress hysteresis(6.3 MPa)under a large applied strain(5%).Large adiabatic temperature changes(△T_(max)=16.3 K atε=5%)and moderate COP_(mater)values(maximum COP_(mater)=11.8 atε=2%)were achieved.The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material.展开更多
Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into...Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge.Herein,inspired by the hysteresis strategy of the scorpion slit receptor,a bio-inspired flexible strain sensor(BFSS)with parallel through-slit arrays is designed and fabricated.Specifically,BFSS consists of conductive monolayer graphene and viscoelastic styrene–isoprene–styrene block copolymer.Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials,BFSS can achieve both hypersensitivity and highly selective frequency response.Remarkably,the BFSS exhibits a high gage factor of 657.36,and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration.Moreover,the BFSS possesses a wide frequency detection range(103 Hz)and stable durability(1000 cycles).It can sense and recognize vibration signals with different characteristics,including the frequency,amplitude,and waveform.This work,which turns the hysteresis effect into a"treasure,"can provide new design ideas for sensors for potential applications including human–computer interaction and health monitoring of mechanical equipment.展开更多
In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylam...In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylamidophenylboronic acid(AAPBA)were the main body,and the numerous hydroxyl groups in the trehalose(Treh)molecule and other polymer groups formed strong hydrogen bonding interactions to improve the mechanical properties of the PAM/PAAPBA/Treh(PAAT)hydrogel and ensured the simplicity of the synthesis process.The hydrogel possessed high strain at break(1239%),stress(64.7 kPa),low hysteresis(100%to 500%strain,corresponding to dissipation energy from 1.37 to 7.80 kJ/m^(3)),and outstanding cycling stability(retained more than 90%of maximum stress after 200 ten-sile cycles).By integrating carbon nanotubes(CNTs)into PAAT hydrogel(PAATC),the PAATC hydrogel with excellent strain response performance was successfully constructed.The PAATC conductive hydro-gel exhibited high sensitivity(gauge factor(GF)=10.58 and sensitivity(S)=0.304 kPa^(-1)),wide strain response range(0.5%-1000%),fast response time(450 ms),and short recovery time(350 ms),excellent fatigue resistance,and strain response stability.Furthermore,the PAATC-based triboelectric nanogener-ator(TENG)displayed outstanding energy harvesting performance,which shows its potential for appli-cation in self-powered electronic devices.展开更多
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr...A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.展开更多
In the past two decades,a lot of high-capacity conversion-type metal oxides have been intensively studied as alternative anode materials for Li-ion batteries with higher energy density.Unfortunately,their large voltag...In the past two decades,a lot of high-capacity conversion-type metal oxides have been intensively studied as alternative anode materials for Li-ion batteries with higher energy density.Unfortunately,their large voltage hysteresis(0.8-1.2 V) within reversed conversion reactions results in huge round-trip inefficiencies and thus lower energy efficiency(50%-75%) in full cells than those with graphite anodes.This remains a long-term open question and has been the most serious drawback toward application of metal oxide anodes.Here we clarify the origins of voltage hysteresis in the typical SnO2anode and propose a universal strategy to minimize it.With the established in situ phosphating to generate metal phosphates during reversed conversion reactions in synergy with boosted reaction kinetics by the added P and Mo,the huge voltage hysteresis of 0.9 V in SnO_(2),SnO_(2)-Mo,and 0.6 V in SnO2-P anodes is minimized to 0.3 V in a ternary SnO_(2)-Mo-P(SOMP) composite,along with stable high capacity of 936 mA h g^(-1)after 800 cycles.The small voltage hysteresis can remain stable even the SOMP anode operated at high current rate of10 A g^(-1)and wide-range temperatures from 60 to 30℃,resulting in a high energy efficiency of88.5% in full cells.This effective strategy to minimize voltage hysteresis has also been demonstrated in Fe2O3,Co3O4-basded conversion-type anodes.This work provides important guidance to advance the high-capacity metal oxide anodes from laboratory to industrialization.展开更多
A big enough transverse magnetic field applied to soft magnetic ferrite toroid can magnetize the ferrite to a saturation level in transverse direction and almost completely suppresses magnetic domain structures in the...A big enough transverse magnetic field applied to soft magnetic ferrite toroid can magnetize the ferrite to a saturation level in transverse direction and almost completely suppresses magnetic domain structures in the ferrite,the response to the longitudinal alternating electromagnetic field changes from the original domain wall displacements and spin rotations to the precession of magnetization around the transverse field,and the hysteresis loss disappears in the ferrites.Both theoretical and experimental results indicate that the permeability and magnetic loss in the ferrite can be controlled by adjusting the transverse magnetic field.A higher Q value with relatively low permeability can be achieved by increasing the transverse field,which ensures that the ferrite can be operated at high frequencies,with magnetic loss being very low.展开更多
Giant magnetostrictive actuators(GMAs) are a widely used type of micro-nano actuator, and they are greatly significant in the field of precision engineering. The accuracy of a GMA often depends on its hysteresis model...Giant magnetostrictive actuators(GMAs) are a widely used type of micro-nano actuator, and they are greatly significant in the field of precision engineering. The accuracy of a GMA often depends on its hysteresis model. However, existing models have some limitations,including the difficulty of identifying their parameters and the tradeoff between the quantity of modeling data required and the level of precision achieved. To solve these problems, in this paper, we propose a Preisach inverse model based on equal-density segmentation of the weight function(E-Preisach). The weight function used to calculate the displacement is first discretized. Then, to obtain a finer weight distribution, the discretized geometric units are uniformly divided by area. This can further minimize the output displacement span, and it produces a higher-precision hysteresis model. The process of parameter identification is made easier by this approach, which also resolves the difficulty of obtaining high precision using a small amount of modeling data. The Preisach and the E-Preisach inverse models were investigated and compared using experiments. At frequencies of 1 and 5 Hz, it was found that the E-Preisach inverse model decreases the maximum error of the feedforward compensation open-loop control to within 1 μm and decreases the root-mean-square error in displacement to within0.5 μm without the need to increase the number of measured hysteresis loops. As a result, the E-Preisach inverse model streamlines the structure of the model and requires fewer parameters for modeling. This provides a high-precision modeling method using a small amount of modeling data;it will have applications in precision engineering fields such as active vibration damping and ultra-precision machining.展开更多
Commercialization of perovskite solar cells(PSCs) requires the development of high-efficiency devices with none current density-voltage(J-V) hysteresis. Here, electron transport layers(ETLs) with gradual change in wor...Commercialization of perovskite solar cells(PSCs) requires the development of high-efficiency devices with none current density-voltage(J-V) hysteresis. Here, electron transport layers(ETLs) with gradual change in work function(WF) are successfully fabricated and employed as an ideal model to investigate the energy barriers, charge transfer and recombination kinetics at ETL/perovskite interface. The energy barrier for electron injection existing at ETL/perovskite is directly assessed by surface photovoltage microscopy, and the results demonstrate the tunable barriers have significant impact on the J-V hysteresis and performance of PSCs. By work function engineering of ETL, PSCs exhibit PCEs over 21% with negligible hysteresis. These results provide a critical understanding of the origin reason for hysteresis effect in planar PSCs, and clear reveal that the J-V hysteresis can be effectively suppressed by carefully tuning the interface features in PSCs. By extending this strategy to a modified formamidinium-cesium-rubidium(FA-Cs-Rb) perovskite system, the PCEs are further boosted to 24.18%. Moreover, 5 cm × 5 cm perovskite mini-modules are also fabricated with an impressive efficiency of 20.07%, demonstrating compatibility and effectiveness of our strategy on upscaled devices.展开更多
Gravity is considered one of the most mysterious of the four fundamental forces, a well-studied but poorly understood phenomenon in science. Newtonian physics and General Relativity have studied it from outside. Based...Gravity is considered one of the most mysterious of the four fundamental forces, a well-studied but poorly understood phenomenon in science. Newtonian physics and General Relativity have studied it from outside. Based on fundamental forces the Grand Unified Theory (GUT) and the Standard Model (SM) of Particle Physics study from the inside. GUT and SM explain three fundamental forces that govern the universe: electromagnetism, the strong force, and the weak force. The fourth fundamental force hopes that must be gravity, which the SM cannot adequately explain. The research aims to explain fundamental forces and their interactions based on the hysteresis law. The hysteresis law studies the fundamental forces from both inside and outside, so, I hope it can explain the rules and principles of the universe from the microworld to the macroscopic world. The united force of the three fundamental forces in high energy singularity (vertical asymptote) of the hysteresis becomes the weakest like weak interaction and continuously like strong force but has an infinite range like electromagnetic interaction. In this sense, it may be called gravity. Unfortunately, gravity is not an individual force;it is the positive singularity or high energy asymptotic sum of three fundamental forces emerging from the depth of the hysteresis of the subatomic particles.展开更多
A highly efficient and re liable topology-dual buck half bridge inverter (DBI) is introduced. The existenc e of discontinuous conduction mode (DCM) operation state requires the bias of in du ctor current for DBI imple...A highly efficient and re liable topology-dual buck half bridge inverter (DBI) is introduced. The existenc e of discontinuous conduction mode (DCM) operation state requires the bias of in du ctor current for DBI implemented with linear controllers like ramp comparison SP WM (RCSPWM) controllers. A novel operation scheme for DBI and a hysteresis curre nt controlled dual buck half bridge inverter (HCDBI) are proposed. The bias curr ent required by RCSPWM DBI is eliminated and conduction losses are dramatically reduced. HCDBI has greatly improved the modulation performance in DCM region for the benefit of its excellent command tracking capability. The operational schem e and control strategy are presented. Power losses of the conventional half brid ge inverter (CHBI) and HCDBI are compared with mathematical computation, and exp erimental verification is also executed. Both calculational and experimental res ults verify that HCDBI has a superior switching performance over CHBI. Its exce llent high frequency operational capacity provides another access to realize high fre quency operation of inverters.展开更多
The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the ...The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.展开更多
Observation and measurement were conducted to investigate contact angle andits hysteresis on rough surface. The experimental results indicate that the increase in solidsurface roughness enlarges advancing contact angl...Observation and measurement were conducted to investigate contact angle andits hysteresis on rough surface. The experimental results indicate that the increase in solidsurface roughness enlarges advancing contact angle and decreases receding contact angle, resultingin enhanced hysteresis. It was observed that when Young''s contact angle θ_Y 【 90°, as theroughness of solid surface increased the extent of the decrease in receding contact angle exceededthat of the increase in advancing contact angle. Based on the experimental observations, the conceptof hysteresis tension was introduced to describe the contact angle hysteresis behavior on roughsolid surface. The model provides a thoughtful understanding of the physical nature of contact anglehysteresis, in particular an instructive description of the influence of surface roughness on thehysteresis. The prediction of the model is found in quite good agreement with the experimentalobservation and measurement.展开更多
Based on the low-cycle fatigue tests of carbon and alloy steels,the cyclic properties of hysteresis energy and its changing rules have been analysed.The mathematical formula of cyclic hysteresis energy of the material...Based on the low-cycle fatigue tests of carbon and alloy steels,the cyclic properties of hysteresis energy and its changing rules have been analysed.The mathematical formula of cyclic hysteresis energy of the materials with different cyclic properties have been presented. The total absorbed energy to failure is associated with the variation of cyclic hysteresis energy.展开更多
In this paper, robust stability of nonlinear plants represented by non-symmetric Prandtl-Ishlinskii (PI) hysteresis model is studied. In general, PI hysteresis model is the weighted superposition of play or stop hys...In this paper, robust stability of nonlinear plants represented by non-symmetric Prandtl-Ishlinskii (PI) hysteresis model is studied. In general, PI hysteresis model is the weighted superposition of play or stop hysteresis operators, and the slopes of the operators are considered to be the same. In order to make a hysteresis model, a modified form of non-symmetric play hysteresis operator with unknown slopes is given. The hysteresis model is described by a generalized Lipschitz operator term and a bounded parasitic term. Since the generalized Lipschitz operator is unknown, a new condition using robust right coprime factorization is proposed to guarantee robust stability of the controlled plant with the hysteresis nonlinearity. As a result, based on the proposed robust condition, a stabilized plant is obtained. A numerical example is presented to validate the effectiveness of the proposed method.展开更多
Applying the results of stress and strain calculated by 3D finite element model of truck radial tire 11.00R20, a MATLAB program used to compute rolling resistance of the tire caused by hysteresis rolling resistance (H...Applying the results of stress and strain calculated by 3D finite element model of truck radial tire 11.00R20, a MATLAB program used to compute rolling resistance of the tire caused by hysteresis rolling resistance (HRR) is worked out. The HRR distribution on different part of tire section, and the effects of speed, load, internal pressure and the width of the rim on HRR are analyzed. The analysis results showed that energy loss produced by tread rubber contributes the most part to HRR of the whole tire, and that to decrease the HRR, the hysteresis factor of the tread rubber should be reduced, and the distribution of the stress and strain on the section be optimized.展开更多
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2024SDXHDX0007)the National Natural Science Foundation of China(Grant No.12474131)+4 种基金the China Postdoctoral Science Foundation(Grant Nos.2022M722845 and 2023T160586)the Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(Grant No.LR23A040001)the Research Center for Industries of the Future(RCIF)at Westlake University(Grant No.WU2023C009)the National Key R&D Program of China(Grant Nos.2020YFA0308800 and 2022YFA1403400)the Beijing Natural Science Foundation(Grant No.Z210006).The authors thank the support provided by Dr.Chao Zhang from Instrumentation and Service Center for Physical Sciences at Westlake University.
文摘The hysteresis of magnetoresistance observed in superconductors is of great interest due to its potential connectionwith unconventional superconductivity.In this study,we perform electrical transport measurements on kagome superconductorCsV_(3)Sb_(5)nanoflakes and uncover unusual hysteretic behavior of magnetoresistance in the superconducting state.This hysteresis can be induced by applying either a large DC or AC current at temperatures(T)well below the superconductingtransition temperature(T_(c)).As T approaches T_(c),similar weak hysteresis is also detected by applying a smallcurrent.Various scenarios are discussed,with particular focus on the effects of vortex pinning and the presence of timereversal-symmtery-breaking superconducting domains.Our findings support the latter,hinting at chiral superconductivityin kagome superconductors.
基金Project supported by the Science Fund of the Key Laboratory of Cryogenic Science and Technology(Grant Nos.CRYO20230203 and CRYO202106)the National Natural Science Foundation of China(Grant Nos.51872299 and 52071223)the National Key Research and Development Program of China(Grant No.2019YFA0704904)。
文摘Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect,low hysteresis,and high reversibility on phase transformation was very active in recent years.Here,we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment,with very low stress hysteresis(6.3 MPa)under a large applied strain(5%).Large adiabatic temperature changes(△T_(max)=16.3 K atε=5%)and moderate COP_(mater)values(maximum COP_(mater)=11.8 atε=2%)were achieved.The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material.
基金This work was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.52021003)National Natural Science Foundation of China(Grant No.51835006)+6 种基金the National Natural Science Foundation of China(Grant Nos.52222509,52105301,U19A20103)Jilin University Science and Technology Innovative Research Team(Grant No.2020TD-03)Interdisciplinary Integration and Innovation Project of JLU(Grant No.JLUXKJC2021ZZ03)the Natural Science Foundation of Jilin Province(Grant No.20220101220JC)Education Department of Jilin Province(Grant No.JJKH20220979KJ)Graduate Innovation Fund of Jilin University(2023CX077)supported by“Fundamental Research Funds for the Central Universities.”。
文摘Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge.Herein,inspired by the hysteresis strategy of the scorpion slit receptor,a bio-inspired flexible strain sensor(BFSS)with parallel through-slit arrays is designed and fabricated.Specifically,BFSS consists of conductive monolayer graphene and viscoelastic styrene–isoprene–styrene block copolymer.Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials,BFSS can achieve both hypersensitivity and highly selective frequency response.Remarkably,the BFSS exhibits a high gage factor of 657.36,and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration.Moreover,the BFSS possesses a wide frequency detection range(103 Hz)and stable durability(1000 cycles).It can sense and recognize vibration signals with different characteristics,including the frequency,amplitude,and waveform.This work,which turns the hysteresis effect into a"treasure,"can provide new design ideas for sensors for potential applications including human–computer interaction and health monitoring of mechanical equipment.
基金the financial support from the National Natural Science Foundation of China (52002356)the China Postdoctoral Science Foundation (2020M672269)the National Key R&D program of China (2019YFA0706802)
文摘In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylamidophenylboronic acid(AAPBA)were the main body,and the numerous hydroxyl groups in the trehalose(Treh)molecule and other polymer groups formed strong hydrogen bonding interactions to improve the mechanical properties of the PAM/PAAPBA/Treh(PAAT)hydrogel and ensured the simplicity of the synthesis process.The hydrogel possessed high strain at break(1239%),stress(64.7 kPa),low hysteresis(100%to 500%strain,corresponding to dissipation energy from 1.37 to 7.80 kJ/m^(3)),and outstanding cycling stability(retained more than 90%of maximum stress after 200 ten-sile cycles).By integrating carbon nanotubes(CNTs)into PAAT hydrogel(PAATC),the PAATC hydrogel with excellent strain response performance was successfully constructed.The PAATC conductive hydro-gel exhibited high sensitivity(gauge factor(GF)=10.58 and sensitivity(S)=0.304 kPa^(-1)),wide strain response range(0.5%-1000%),fast response time(450 ms),and short recovery time(350 ms),excellent fatigue resistance,and strain response stability.Furthermore,the PAATC-based triboelectric nanogener-ator(TENG)displayed outstanding energy harvesting performance,which shows its potential for appli-cation in self-powered electronic devices.
基金National Natural Science Foundation of China(Nos.62171285,61971120 and 62327807)。
文摘A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.
基金financially supported by the National Natural Science Foundation of China (Nos. 52071144, 52231009,51831009, 51901043)the Guangdong Basic and Applied Basic Research Foundation (No. 2023B1515040011)+1 种基金the Guangzhou Key Research and Development Program (No. 202103040001)the TCL Science and Technology Innovation Fund (No.20222055)。
文摘In the past two decades,a lot of high-capacity conversion-type metal oxides have been intensively studied as alternative anode materials for Li-ion batteries with higher energy density.Unfortunately,their large voltage hysteresis(0.8-1.2 V) within reversed conversion reactions results in huge round-trip inefficiencies and thus lower energy efficiency(50%-75%) in full cells than those with graphite anodes.This remains a long-term open question and has been the most serious drawback toward application of metal oxide anodes.Here we clarify the origins of voltage hysteresis in the typical SnO2anode and propose a universal strategy to minimize it.With the established in situ phosphating to generate metal phosphates during reversed conversion reactions in synergy with boosted reaction kinetics by the added P and Mo,the huge voltage hysteresis of 0.9 V in SnO_(2),SnO_(2)-Mo,and 0.6 V in SnO2-P anodes is minimized to 0.3 V in a ternary SnO_(2)-Mo-P(SOMP) composite,along with stable high capacity of 936 mA h g^(-1)after 800 cycles.The small voltage hysteresis can remain stable even the SOMP anode operated at high current rate of10 A g^(-1)and wide-range temperatures from 60 to 30℃,resulting in a high energy efficiency of88.5% in full cells.This effective strategy to minimize voltage hysteresis has also been demonstrated in Fe2O3,Co3O4-basded conversion-type anodes.This work provides important guidance to advance the high-capacity metal oxide anodes from laboratory to industrialization.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2022YFB3504800 and 2021YFB3502400)the Key Research and Development Plan of Anhui Province,China(Grant No.202003c08020012)the Key Program of Education Department of Anhui Province,China(Grant No.KJ2019ZD03)。
文摘A big enough transverse magnetic field applied to soft magnetic ferrite toroid can magnetize the ferrite to a saturation level in transverse direction and almost completely suppresses magnetic domain structures in the ferrite,the response to the longitudinal alternating electromagnetic field changes from the original domain wall displacements and spin rotations to the precession of magnetization around the transverse field,and the hysteresis loss disappears in the ferrites.Both theoretical and experimental results indicate that the permeability and magnetic loss in the ferrite can be controlled by adjusting the transverse magnetic field.A higher Q value with relatively low permeability can be achieved by increasing the transverse field,which ensures that the ferrite can be operated at high frequencies,with magnetic loss being very low.
基金This work was supported by the Basic Technological Research Projects(Metrology)(Grant No.JSJL2020206B001).
文摘Giant magnetostrictive actuators(GMAs) are a widely used type of micro-nano actuator, and they are greatly significant in the field of precision engineering. The accuracy of a GMA often depends on its hysteresis model. However, existing models have some limitations,including the difficulty of identifying their parameters and the tradeoff between the quantity of modeling data required and the level of precision achieved. To solve these problems, in this paper, we propose a Preisach inverse model based on equal-density segmentation of the weight function(E-Preisach). The weight function used to calculate the displacement is first discretized. Then, to obtain a finer weight distribution, the discretized geometric units are uniformly divided by area. This can further minimize the output displacement span, and it produces a higher-precision hysteresis model. The process of parameter identification is made easier by this approach, which also resolves the difficulty of obtaining high precision using a small amount of modeling data. The Preisach and the E-Preisach inverse models were investigated and compared using experiments. At frequencies of 1 and 5 Hz, it was found that the E-Preisach inverse model decreases the maximum error of the feedforward compensation open-loop control to within 1 μm and decreases the root-mean-square error in displacement to within0.5 μm without the need to increase the number of measured hysteresis loops. As a result, the E-Preisach inverse model streamlines the structure of the model and requires fewer parameters for modeling. This provides a high-precision modeling method using a small amount of modeling data;it will have applications in precision engineering fields such as active vibration damping and ultra-precision machining.
基金supported by the National Natural Science Foundation of China (Grant No. NSFC62004182)the Career Development Grant of Institute of Chemical Materials (Grant No. STB-2021-10)the Sichuan Science and Technology Program (Grant No. 2022JDRC0021)。
文摘Commercialization of perovskite solar cells(PSCs) requires the development of high-efficiency devices with none current density-voltage(J-V) hysteresis. Here, electron transport layers(ETLs) with gradual change in work function(WF) are successfully fabricated and employed as an ideal model to investigate the energy barriers, charge transfer and recombination kinetics at ETL/perovskite interface. The energy barrier for electron injection existing at ETL/perovskite is directly assessed by surface photovoltage microscopy, and the results demonstrate the tunable barriers have significant impact on the J-V hysteresis and performance of PSCs. By work function engineering of ETL, PSCs exhibit PCEs over 21% with negligible hysteresis. These results provide a critical understanding of the origin reason for hysteresis effect in planar PSCs, and clear reveal that the J-V hysteresis can be effectively suppressed by carefully tuning the interface features in PSCs. By extending this strategy to a modified formamidinium-cesium-rubidium(FA-Cs-Rb) perovskite system, the PCEs are further boosted to 24.18%. Moreover, 5 cm × 5 cm perovskite mini-modules are also fabricated with an impressive efficiency of 20.07%, demonstrating compatibility and effectiveness of our strategy on upscaled devices.
文摘Gravity is considered one of the most mysterious of the four fundamental forces, a well-studied but poorly understood phenomenon in science. Newtonian physics and General Relativity have studied it from outside. Based on fundamental forces the Grand Unified Theory (GUT) and the Standard Model (SM) of Particle Physics study from the inside. GUT and SM explain three fundamental forces that govern the universe: electromagnetism, the strong force, and the weak force. The fourth fundamental force hopes that must be gravity, which the SM cannot adequately explain. The research aims to explain fundamental forces and their interactions based on the hysteresis law. The hysteresis law studies the fundamental forces from both inside and outside, so, I hope it can explain the rules and principles of the universe from the microworld to the macroscopic world. The united force of the three fundamental forces in high energy singularity (vertical asymptote) of the hysteresis becomes the weakest like weak interaction and continuously like strong force but has an infinite range like electromagnetic interaction. In this sense, it may be called gravity. Unfortunately, gravity is not an individual force;it is the positive singularity or high energy asymptotic sum of three fundamental forces emerging from the depth of the hysteresis of the subatomic particles.
文摘A highly efficient and re liable topology-dual buck half bridge inverter (DBI) is introduced. The existenc e of discontinuous conduction mode (DCM) operation state requires the bias of in du ctor current for DBI implemented with linear controllers like ramp comparison SP WM (RCSPWM) controllers. A novel operation scheme for DBI and a hysteresis curre nt controlled dual buck half bridge inverter (HCDBI) are proposed. The bias curr ent required by RCSPWM DBI is eliminated and conduction losses are dramatically reduced. HCDBI has greatly improved the modulation performance in DCM region for the benefit of its excellent command tracking capability. The operational schem e and control strategy are presented. Power losses of the conventional half brid ge inverter (CHBI) and HCDBI are compared with mathematical computation, and exp erimental verification is also executed. Both calculational and experimental res ults verify that HCDBI has a superior switching performance over CHBI. Its exce llent high frequency operational capacity provides another access to realize high fre quency operation of inverters.
基金supported by the High Technology Research and Development Program of Jilin(20130204021GX)the Specialized Research Fund for Graduate Course Identification System Program(Jilin University)of China(450060523183)+2 种基金the National Natural Science Foundation of China(61520106008,U1564207,61503149)the Education Department of Jilin Province of China(2016430)the Graduate Innovation Fund of Jilin University(2016030)
基金Supported by the National Natural Science Foundation of China(51075204)the Graduate Innovation Foundation of Jiangsu Province(CX08B-133Z)the Doctoral Innovation Foundation of Nanjing University of Aeronautics and Astronautics(BCXJ08-05)~~
文摘The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.
文摘Observation and measurement were conducted to investigate contact angle andits hysteresis on rough surface. The experimental results indicate that the increase in solidsurface roughness enlarges advancing contact angle and decreases receding contact angle, resultingin enhanced hysteresis. It was observed that when Young''s contact angle θ_Y 【 90°, as theroughness of solid surface increased the extent of the decrease in receding contact angle exceededthat of the increase in advancing contact angle. Based on the experimental observations, the conceptof hysteresis tension was introduced to describe the contact angle hysteresis behavior on roughsolid surface. The model provides a thoughtful understanding of the physical nature of contact anglehysteresis, in particular an instructive description of the influence of surface roughness on thehysteresis. The prediction of the model is found in quite good agreement with the experimentalobservation and measurement.
文摘Based on the low-cycle fatigue tests of carbon and alloy steels,the cyclic properties of hysteresis energy and its changing rules have been analysed.The mathematical formula of cyclic hysteresis energy of the materials with different cyclic properties have been presented. The total absorbed energy to failure is associated with the variation of cyclic hysteresis energy.
文摘In this paper, robust stability of nonlinear plants represented by non-symmetric Prandtl-Ishlinskii (PI) hysteresis model is studied. In general, PI hysteresis model is the weighted superposition of play or stop hysteresis operators, and the slopes of the operators are considered to be the same. In order to make a hysteresis model, a modified form of non-symmetric play hysteresis operator with unknown slopes is given. The hysteresis model is described by a generalized Lipschitz operator term and a bounded parasitic term. Since the generalized Lipschitz operator is unknown, a new condition using robust right coprime factorization is proposed to guarantee robust stability of the controlled plant with the hysteresis nonlinearity. As a result, based on the proposed robust condition, a stabilized plant is obtained. A numerical example is presented to validate the effectiveness of the proposed method.
文摘Applying the results of stress and strain calculated by 3D finite element model of truck radial tire 11.00R20, a MATLAB program used to compute rolling resistance of the tire caused by hysteresis rolling resistance (HRR) is worked out. The HRR distribution on different part of tire section, and the effects of speed, load, internal pressure and the width of the rim on HRR are analyzed. The analysis results showed that energy loss produced by tread rubber contributes the most part to HRR of the whole tire, and that to decrease the HRR, the hysteresis factor of the tread rubber should be reduced, and the distribution of the stress and strain on the section be optimized.