In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung n...In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed.展开更多
To enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web, a new fuzzy extension of description logics called vague ALC which is based on vague sets is present...To enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web, a new fuzzy extension of description logics called vague ALC which is based on vague sets is presented. The definition of vague set is introduced and then the syntax and semantics of vague ALC are formally defined. The forms of axioms and assertions in the vague ALC knowledge bases are specified. Finally, the tableau algorithm is developed for the reasoning in the vague ALC. The vague ALC based on vague set uses two degrees of membership instead of a single membership degree in the fuzzy sets and is more accurate in representing the imprecision in the degrees of membership. The vague ALC has more expressive power than ALC and can represent fuzzy knowledge and perform reasoning tasks based on them. Therefore, the vague ALC can enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web.展开更多
A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans accord...A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.展开更多
The modelling and formal characterization of spatial vagueness plays an increasingly important role in the imple- mentation of Geographic Information System (GIS). The concepts involved in spatial objects of GIS have ...The modelling and formal characterization of spatial vagueness plays an increasingly important role in the imple- mentation of Geographic Information System (GIS). The concepts involved in spatial objects of GIS have been investigated and acknowledged as being vague and ambiguous. Models and methods which describe and handle fuzzy or vague (rather than crisp or determinate) spatial objects, will be more necessary in GIS. This paper proposes a new method for modelling spatial vagueness based on type-2 fuzzy set, which is distinguished from the traditional type-1 fuzzy methods and more suitable for describing and implementing the vague concepts and objects in GIS.展开更多
Optimal route selection is an important function of vehicle trac flow guidance system. Its core is to determine the index weight for measuring the route merits and to determine the evaluation method for selecting rout...Optimal route selection is an important function of vehicle trac flow guidance system. Its core is to determine the index weight for measuring the route merits and to determine the evaluation method for selecting route. In this paper, subjective weighting method which relies on driver preference is used to determine the weight and the paper proposes the multi-criteria weighted decision method based on vague sets for selecting the optimal route. Examples show that, the usage of vague sets to describe route index value can provide more decision-making information for route selection.展开更多
The proposed algorithm introduces a novel vague set approach to develop a selective but robust, flexible and intelligent contrast enhancement technique for mammograms. Wavelet based filtering analysis can produce Low ...The proposed algorithm introduces a novel vague set approach to develop a selective but robust, flexible and intelligent contrast enhancement technique for mammograms. Wavelet based filtering analysis can produce Low Frequency (LF) and High Frequency (HF) subbands of the original input images. The extremely small size microcalcifications become visible under multiresolution techniques. LF subband is then fuzzified by conventional fuzzy c-means clustering (FCM) algorithm with justified number of clusters. HF components, representing the narrow protrusions and other fine details are also fuzzified by FCM with justified number of clusters. Vague set approach captures the hesitancies and uncertainties of truly affected masses/other breast abnormalities with normal glandular tissues. After highlighting the masses/microcalcifications accurately, both LF and HF subbands are transformed back to the original resolution by inverse wavelet transform. The results show that the proposed method can successfully enhance the selected regions of mammograms and provide better contrast images for visual interpretation.展开更多
The paper draws comparison and analysis among present similarity measure methods in the case of similari-ty measures between Vague values, provides a new similarity measure method, of which discusses on the normalchar...The paper draws comparison and analysis among present similarity measure methods in the case of similari-ty measures between Vague values, provides a new similarity measure method, of which discusses on the normalcharacteristics, gives some relative character theorems. At the same time, it analyzes the application of fuzzy similari-ty measures in vague similarity measures and gives its normal forms such as similarity measures between Vague sets,between elements and their weighted similarity measures. Finally, vague entropy rule respectively aiming at twokinds of cases is approached and its corresponding vague entropy expressions is provided. The content of this paper isof practical significance in such fields as fuzzy decision-making, vague clustering, pattern recognition, data miningetc.展开更多
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(No.RS-2023-00218176)Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea government(MOTIE)(P0012724)The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed.
基金Program for New Century Excellent Talents in Uni-versity (NoNCET-05-0288)
文摘To enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web, a new fuzzy extension of description logics called vague ALC which is based on vague sets is presented. The definition of vague set is introduced and then the syntax and semantics of vague ALC are formally defined. The forms of axioms and assertions in the vague ALC knowledge bases are specified. Finally, the tableau algorithm is developed for the reasoning in the vague ALC. The vague ALC based on vague set uses two degrees of membership instead of a single membership degree in the fuzzy sets and is more accurate in representing the imprecision in the degrees of membership. The vague ALC has more expressive power than ALC and can represent fuzzy knowledge and perform reasoning tasks based on them. Therefore, the vague ALC can enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the semantic web.
基金Project (No. K81077) supported by the Department of Automation, Xiamen University, China
文摘A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.
文摘The modelling and formal characterization of spatial vagueness plays an increasingly important role in the imple- mentation of Geographic Information System (GIS). The concepts involved in spatial objects of GIS have been investigated and acknowledged as being vague and ambiguous. Models and methods which describe and handle fuzzy or vague (rather than crisp or determinate) spatial objects, will be more necessary in GIS. This paper proposes a new method for modelling spatial vagueness based on type-2 fuzzy set, which is distinguished from the traditional type-1 fuzzy methods and more suitable for describing and implementing the vague concepts and objects in GIS.
基金Supported by the Provincial Government Decision-making Tender Subject(2013B318)Supported by the Educational Committee of Henan Province of China(15A520004)
文摘Optimal route selection is an important function of vehicle trac flow guidance system. Its core is to determine the index weight for measuring the route merits and to determine the evaluation method for selecting route. In this paper, subjective weighting method which relies on driver preference is used to determine the weight and the paper proposes the multi-criteria weighted decision method based on vague sets for selecting the optimal route. Examples show that, the usage of vague sets to describe route index value can provide more decision-making information for route selection.
文摘The proposed algorithm introduces a novel vague set approach to develop a selective but robust, flexible and intelligent contrast enhancement technique for mammograms. Wavelet based filtering analysis can produce Low Frequency (LF) and High Frequency (HF) subbands of the original input images. The extremely small size microcalcifications become visible under multiresolution techniques. LF subband is then fuzzified by conventional fuzzy c-means clustering (FCM) algorithm with justified number of clusters. HF components, representing the narrow protrusions and other fine details are also fuzzified by FCM with justified number of clusters. Vague set approach captures the hesitancies and uncertainties of truly affected masses/other breast abnormalities with normal glandular tissues. After highlighting the masses/microcalcifications accurately, both LF and HF subbands are transformed back to the original resolution by inverse wavelet transform. The results show that the proposed method can successfully enhance the selected regions of mammograms and provide better contrast images for visual interpretation.
文摘The paper draws comparison and analysis among present similarity measure methods in the case of similari-ty measures between Vague values, provides a new similarity measure method, of which discusses on the normalcharacteristics, gives some relative character theorems. At the same time, it analyzes the application of fuzzy similari-ty measures in vague similarity measures and gives its normal forms such as similarity measures between Vague sets,between elements and their weighted similarity measures. Finally, vague entropy rule respectively aiming at twokinds of cases is approached and its corresponding vague entropy expressions is provided. The content of this paper isof practical significance in such fields as fuzzy decision-making, vague clustering, pattern recognition, data miningetc.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60564001)教育部留学回国人员科研启动基金(The Project-sponsoredby SRF for ROCS+1 种基金SEMChina under Grant No.教育司留[2004]527号)。