BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients a...BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients and their altered expression in the serum,proteomics techniques were deployed to detect the differentially expressed proteins(DEPs)of in the serum of GDM patients to further explore its pathogenesis,and find out possible biomarkers to forecast GDM occurrence.METHODS Subjects were divided into GDM and normal control groups according to the IADPSG diagnostic criteria.Serum samples were randomly selected from four cases in each group at 24-28 wk of gestation,and the blood samples were identified by applying iTRAQ technology combined with liquid chromatography-tandem mass spectrometry.Key proteins and signaling pathways associated with GDM were identified by bioinformatics analysis,and the expression of key proteins in serum from 12 wk to 16 wk of gestation was further verified using enzyme-linked immunosorbent assay (ELISA).RESULTS Forty-seven proteins were significantly differentially expressed by analyzing the serum samples between the GDMgravidas as well as the healthy ones. Among them, 31 proteins were found to be upregulated notably and the rest16 proteins were downregulated remarkably. Bioinformatic data report revealed abnormal expression of proteinsassociated with lipid metabolism, coagulation cascade activation, complement system and inflammatory responsein the GDM group. ELISA results showed that the contents of RBP4, as well as ANGPTL8, increased in the serumof GDM gravidas compared with the healthy ones, and this change was found to initiate from 12 wk to 16 wk ofgestation.CONCLUSION GDM symptoms may involve abnormalities in lipid metabolism, coagulation cascade activation, complementsystem and inflammatory response. RBP4 and ANGPTL8 are expected to be early predictors of GDM.展开更多
Direct-seeding of rice has become popular in recent years due to its low cost and convenience,however,hypoxic condition limits seedling establishment.In this study,weedy rice WR04-6 with high germination ability under...Direct-seeding of rice has become popular in recent years due to its low cost and convenience,however,hypoxic condition limits seedling establishment.In this study,weedy rice WR04-6 with high germination ability under anaerobic conditions was used as a gene donor,and we successfully improved the seedling establishment rate of rice cultivar Qishanzhan(QSZ)based on selection of a new rice line R42 from the recombinant inbred line population.R42 inherited high anaerobic germination(AG)ability,and was used for isobaric tags for relative and absolute quantitation(iTRAQ)-based comparative proteomic studies with QSZ to further explore the molecular mechanism of AG.A total of 719 differentially abundant proteins(DAPs)were shared by R42 and QSZ responded to AG,and thus defined as common response DAPs.A total of 300 DAPs that responded to AG were only identified from R42,which were defined as tolerance-specific DAPs.The common response and tolerance-specific DAPs had similar biochemical reaction processes and metabolic pathways in response to anoxic stress,however,they involved different proteins.The tolerance-specific DAPs were involved in amino acid metabolism,starch and sucrose metabolism,tricarboxylic acid cycle pathway,ethylene synthesis pathway,cell wall-associated proteins and activity of active oxygen scavenging enzyme.The in silico protein-protein interactions for the top 60 DAPs indicated that tolerance-specific DAPs had relatively independent protein interaction networks in response to an anoxic environment compared with common response DAPs.The results of physiological indicators showed thatα-amylase and superoxide dismutase activities of R42 were significantly increased under anoxic conditions compared with aerobic conditions.Multiple lines of evidence from western blot,physiological analysis and quantitatDirect seeding of rice has become popular in recent years due to its low cost and convenience,however,hypoxic conditions can limit seedling establishment.In the present study,weedy rice WR04-6 with high germination ability in anaerobic conditions was used as the gene donor and successfully improved the seedling establishment rate of rice cultivar Qishanzhan(QSZ)based on selection of a new rice line R42 from the recombinant inbred line(RIL)population.R42 inherited the had high anaerobic germination(AG)ability,which was used for the isobaric tags for relative and absolute quantitation(iTRAQ)based comparative proteomic studies with QSZ to further explore the molecular mechanism of AG.A total of 719 differentially abundant proteins(DAPs)shared by R42 and QSZ responded to AG and were thus defined as common response DAPs.A total of 300 DAPs that responded to AG were only identified from R42,which were defined as tolerance-specific DAPs.The common response and tolerance-specific DAPs had similar biochemical reaction processes and metabolic pathways in response to anoxic stress,however they involved different proteins.The 300 tolerance-specific DAPs were involved in amino acid metabolism,starch and sucrose metabolism,TCA cycle pathways,ethylene synthesis pathway,cell wall-associated proteins and activity of active oxygen scavenging enzyme.The in silico protein-protein interactions for the top 60 DAPs indicated that tolerance-specific DAPs had relatively independent protein interaction networks in response to an anoxic environment compared with common response DAPs.The results of physiological indicators showed thatα-amylase and SOD activities of R42 were significantly increased under anoxic conditions compared with aerobic conditions.Multiple lines of evidence from western blot,physiological analyses and real-time PCR jointly supported the reliability of proteomics data.In summary,our findings deepened the understanding of the molecular mechanism for the rice response to AG.ive real-time PCR jointly supported the reliability of proteomics data.In summary,our findings deepened the understanding of the molecular mechanism for the rice response to AG.展开更多
Dinofl agellates are the major causative agents of harmful algal blooms in the global ocean and they usually form blooms under conditions of very low dissolved inorganic phosphorus(DIP).However,the mechanisms underpin...Dinofl agellates are the major causative agents of harmful algal blooms in the global ocean and they usually form blooms under conditions of very low dissolved inorganic phosphorus(DIP).However,the mechanisms underpinning the dinofl agellate blooms remain unclear.Here,we quantitatively compared protein expression profi les of a marine dinofl agellate,Prorocentrum donghaiense,grown in inorganic P-replete,P-defi cient,and DIP-and dissolved organic phosphorus(DOP)-resupplied conditions by employing a Tandem Mass Tag(TMT)-based quantitative proteomic approach.Proteins involved in intracellular P reallocation,organic P,and non-P lipid utilization were up-regulated under the P-defi cient condition,while inorganic phosphate transporters varied insignifi cantly.In response to the P resupplementation,nitrogen metabolism,ribosome,porphyrin,and chlorophyll metabolism were up-regulated,while lysosome,and starch and sucrose metabolism were down-regulated.Notably,photosynthesis was up-regulated and secondary metabolism was down-regulated only in the DIP-resupplied cells,whereas amino acid metabolism and vitamin B6 metabolism were up-regulated in the DOP-resupplied cells,indicating diff erential response mechanisms of P.donghaiense to DIP or DOP resupplementation.Our results indicated that P.donghaiense initiated multiple strategies in response to an ambient inorganic P-defi ciency,and its efficient DOP assimilation by providing both P and carbon sources might be a key factor driving bloom formations of P.donghaiense in a low DIP environment.展开更多
Enhancing photosynthesis efficiency is considered as one of the most crucial targets during wheat breeding.However,the molecular basis underlying high photosynthesis efficiency is not well understood up to now.In this...Enhancing photosynthesis efficiency is considered as one of the most crucial targets during wheat breeding.However,the molecular basis underlying high photosynthesis efficiency is not well understood up to now.In this study,we investigated the protein expression profile of wheat Jimai5265yg mutant,which is a yellow-green mutant with chlorophylls b deficiency but high photosynthesis efficiency.Though TMT-labeling quantitative proteomics analysis,a total of 72 differential expressed proteins(DEPs)were obtained between the mutant and wild type(WT).GO analysis found that they significantly enriched in thylakoid membrane,pigment binding,magnesium chelatase activity and response to light intensity.KEGG analysis showed that they involved in photosynthesis-antenna protein as well as porphyrin and chlorophyll metabolism.Finally,118 RNA editing events were found between mutant and WT genotype.The A to C editing in the 3-UTR of TraesCS6D02G401500 lead to its high expression in mutant through removing the inhibition of tae-miR9781,which might have vital role in regulating the yellow-green mutant.This study provided some useful clues about the molecular basis of Jimai5265yg mutant as well as chlorophylls metabolism in wheat.展开更多
Biomarke rs are required for the early detection,prognosis prediction,and monitoring of amyotrophic lateral sclerosis,a progressive disease.Proteomics is an unbiased and quantitative method that can be used to detect ...Biomarke rs are required for the early detection,prognosis prediction,and monitoring of amyotrophic lateral sclerosis,a progressive disease.Proteomics is an unbiased and quantitative method that can be used to detect neurochemical signatures to aid in the identification of candidate biomarke rs.In this study,we used a label-free quantitative proteomics approach to screen for substantially differentially regulated proteins in ten patients with sporadic amyotrophic lateral scle rosis compared with five healthy controls.Su bstantial upregulation of serum proteins related to multiple functional clusters was observed in patients with spo radic amyotrophic lateral sclerosis.Potential biomarke rs were selected based on functionality and expression specificity.To validate the proteomics profiles,blood samples from an additional cohort comprising 100 patients with sporadic amyotrophic lateral sclerosis and 100 healthy controls were subjected to enzyme-linked immunosorbent assay.Eight substantially upregulated serum proteins in patients with spora dic amyotrophic lateral sclerosis were selected,of which the cathelicidin-related antimicrobial peptide demonstrated the best discriminative ability between patients with sporadic amyotrophic lateral sclerosis and healthy controls(area under the curve[AUC]=0.713,P<0.0001).To further enhance diagnostic accuracy,a multi-protein combined discriminant algorithm was developed incorporating five proteins(hemoglobin beta,cathelicidin-related antimicrobial peptide,talin-1,zyxin,and translationally-controlled tumor protein).The algo rithm achieved an AUC of 0.811 and a P-value of<0.0001,resulting in 79%sensitivity and 71%specificity for the diagnosis of sporadic amyotrophic lateral scle rosis.Subsequently,the ability of candidate biomarkers to discriminate between early-stage amyotrophic lateral sclerosis patients and controls,as well as patients with different disease severities,was examined.A two-protein panel comprising talin-1 and translationally-controlled tumor protein effectively distinguished early-stage amyotrophic lateral sclerosis patients from controls(AUC=0.766,P<0.0001).Moreove r,the expression of three proteins(FK506 binding protein 1A,cathelicidin-related antimicrobial peptide,and hemoglobin beta-1)was found to increase with disease progression.The proteomic signatures developed in this study may help facilitate early diagnosis and monitor the progression of sporadic amyotrophic lateral sclerosis when used in co mbination with curre nt clinical-based parameters.展开更多
Sensory and motor nerve fibers of peripheral nerves have different anatomies and regeneration functions after injury. To gain a clear understanding of the biological processes behind these differences, we used a label...Sensory and motor nerve fibers of peripheral nerves have different anatomies and regeneration functions after injury. To gain a clear understanding of the biological processes behind these differences, we used a labeling technique termed isobaric tags for relative and absolute quantitation to investigate the protein profiles of spinal nerve tissues from Sprague-Dawley rats. In response to Wallerian degeneration, a total of 626 proteins were screened in sensory nerves, of which 368 were upregulated and 258 were downregulated. In addition, 637 proteins were screened in motor nerves, of which 372 were upregulated and 265 were downregulated. All identified proteins were analyzed using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of bioinformatics, and the presence of several key proteins closely related to Wallerian degeneration were tested and verified using quantitative real-time polymerase chain reaction analyses. The differentially expressed proteins only identified in the sensory nerves were mainly relevant to various biological processes that included cell-cell adhesion, carbohydrate metabolic processes and cell adhesion, whereas differentially expressed proteins only identified in the motor nerves were mainly relevant to biological processes associated with the glycolytic process, cell redox homeostasis, and protein folding. In the aspect of the cellular component, the differentially expressed proteins in the sensory and motor nerves were commonly related to extracellular exosomes, the myelin sheath, and focal adhesion. According to the Kyoto Encyclopedia of Genes and Genomes, the differentially expressed proteins identified are primarily related to various types of metabolic pathways. In conclusion, the present study screened differentially expressed proteins to reveal more about the differences and similarities between sensory and motor nerves during Wallerian degeneration. The present findings could provide a reference point for a future investigation into the differences between sensory and motor nerves in Wallerian degeneration and the characteristics of peripheral nerve regeneration. The study was approved by the Ethics Committee of the Chinese PLA General Hospital, China(approval No. 2016-x9-07) in September 2016.展开更多
Dairy cows undergo tremendous changes in physiological, metabolism and the immune function from pregnancy to lac- tation that are associated with cows being susceptible to metabolic and infectious diseases. The object...Dairy cows undergo tremendous changes in physiological, metabolism and the immune function from pregnancy to lac- tation that are associated with cows being susceptible to metabolic and infectious diseases. The objective of this study is to investigate the changes of plasma proteome on 21 d before expected calving and 1 d after calving from dairy cows using an integrated proteomic approach consisting of minor abundance protein enrichment by ProteoMiner beads, protein labeling by isobaric tags for relative and absolute quantification, and protein identification by liquid chromatography coupled with tandem mass spectrometry. Nineteen proteins were changed around the time of calving. These proteins were asso- ciated with response to stress, including acute-phase response and defense response, based on the proteins annotation. In particular, three up-regulated proteins after calving including factor V, a2-antiplasmin and prothrombin were assigned into the complement and coagulation pathway. These results may provide new information in elucidating host response to lactation and parturition stress, and inflammatory-like conditions at the protein level. Differential proteins may serve as potential markers to regulate the lactation and parturition stress in periparturient dairy cows.展开更多
Long-chain omega-3 polyunsaturated fatty acids(LC-PUFAs),known for having many health benefits,are usually present in three forms:triglycerides(TG),ethyl esters(EE),and phospholipid(PL).In this study,the effects of th...Long-chain omega-3 polyunsaturated fatty acids(LC-PUFAs),known for having many health benefits,are usually present in three forms:triglycerides(TG),ethyl esters(EE),and phospholipid(PL).In this study,the effects of these three LC-PUFAs forms(fish oil for TG and EE,krill oil for PL)on the obese mice were compared,and the proteomic changes that focused on lipid metabolism were evaluated via label-free quantitative proteomics analysis.Compared with the model group,all three of the LC-PUFA form supplementations(labeled as the FO-TG group,FO-EE group and KO-PL groups)could significantly reduce body weight gain(P<0.01).Low-density lipoprotein cholesterol levels were significantly decreased,whereas high-density lipoprotein cholesterol levels were significantly increased in the FO-TG group and FO-EE group(P<0.01),and especially in the PL group(P<0.001).Furthermore,proteomics analysis results suggested that some differentially expressed genes involved in the fatty acid degradation and oxidation pathways had a higher expression fold in the KO-PL group than in the FO-TG or FO-EE groups.Our results showed that dietary LC-PUFAs can reduce fat deposition and inhibit lipogenesis in the liver by upregulating the expression of proteins that are involved in the fatty acid degradation and oxidation pathways.Additionally,KO-PL elicits stronger effects than FO-TG or FO-EE.展开更多
Nerve transfer is the most common treatment for total brachial plexus avulsion injury. After nerve transfer, the movement of the injured limb may be activated by certain movements of the healthy limb at the early stag...Nerve transfer is the most common treatment for total brachial plexus avulsion injury. After nerve transfer, the movement of the injured limb may be activated by certain movements of the healthy limb at the early stage of recovery, i.e., trans-hemispheric reorganization. Pre- vious studies have focused on functional magnetic resonance imaging and changes in brain-derived neurotrophic factor and growth asso- ciated protein 43, but there have been no proteomics studies. In this study, we designed a rat model of total brachial plexus avulsion injury involving contralateral C7 nerve transfer. Isobaric tags for relative and absolute quantitation and western blot assay were then used to screen differentially expressed proteins in bilateral motor cortices. We found that most differentially expressed proteins in both cortices of upper limb were associated with nervous system development and function (including neuron differentiation and development, axonogenesis, and guidance), microtubule and cytoskeleton organization, synapse plasticity, and transmission of nerve impulses. Two key differentially expressed proteins, neurofilament light (NFL) and Thy-1, were identified. In contralateral cortex, the NFL level was upregulated 2 weeks after transfer and downregulated at 1 and 5 months. The Thy-1 level was upregulated from 1 to 5 months. In the affected cortex, the NFL level increased gradually from 1 to 5 months. Western blot results of key differentially expressed proteins were consistent with the proteom- ic findings. These results indicate that NFL and Thy-1 play an important role in trans-hemispheric organization following total brachial plexus root avulsion and contralateral C7 nerve transfer.展开更多
In treating patients with obstetric brachial plexus palsy,we noticed that denervated intrinsic muscles of the hand become irreversibly atrophic at a faster than denervated biceps.In a rat model of obstetric brachial p...In treating patients with obstetric brachial plexus palsy,we noticed that denervated intrinsic muscles of the hand become irreversibly atrophic at a faster than denervated biceps.In a rat model of obstetric brachial plexus palsy,denervated intrinsic musculature of the forepaw entered the irreversible atrophy far earlier than denervated biceps.In this study,isobaric tags for relative and absolute quantitation were examined in the intrinsic musculature of forepaw and biceps on denervated and normal sides at 3 and 5 weeks to identify dysregulated proteins.Enrichment of pathways mapped by those proteins was analyzed by Kyoto Encyclopedia of Genes and Genomes analysis.At 3 weeks,119 dysregulated proteins in denervated intrinsic musculature of the forepaw were mapped to nine pathways for muscle regulation,while 67 dysregulated proteins were mapped to three such pathways at 5 weeks.At 3 weeks,27 upregulated proteins were mapped to five pathways involving inflammation and apoptosis,while two upregulated proteins were mapped to one such pathway at 5 weeks.At 3 and 5 weeks,53 proteins from pathways involving regrowth and differentiation were downregulated.At 3 weeks,64 dysregulated proteins in denervated biceps were mapped to five pathways involving muscle regulation,while,five dysregulated proteins were mapped to three such pathways at 5 weeks.One protein mapped to inflammation and apoptotic pathways was upregulated from one pathway at 3 weeks,while three proteins were downregulated from two other pathways at 5 weeks.Four proteins mapped to regrowth and differentiation pathways were upregulated from three pathways at 3 weeks,while two proteins were downregulated in another pathway at 5 weeks.These results implicated inflammation and apoptosis as critical factors aggravating atrophy of denervated intrinsic muscles of the hand during obstetric brachial plexus palsy.All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Fudan University,China(approval No.DF-325)in January 2015.展开更多
OBJECTIVE:To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction(葛花解酒涤脂汤,GJDD)on alcoholic fatty live disease(AFLD)by using proteomic methods.METHODS:The male C57BL/6J mouse were randomly...OBJECTIVE:To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction(葛花解酒涤脂汤,GJDD)on alcoholic fatty live disease(AFLD)by using proteomic methods.METHODS:The male C57BL/6J mouse were randomly divided into four groups:control group,model group,GJDD group and resveratrol group.After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method,the GJDD group and resveratrol group were intragastrically administered with GJDD(4900 mg/kg)and resveratrol(400 mg/kg)respectively,once a day for 9 d.The fat deposition of liver tissue was observed and evaluated by oil red O(ORO)staining.4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group.The differentially expressed proteins were screened according to protein expression differential multiples,and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment.Finally,expression validation of the differentially co-expressed proteins from control group,model group and GJDD group were verified by targeted proteomics quantification techniques.RESULTS:In semiquantitative analyses of ORO,all kinds of steatosis(ToS,MaS,and MiS)were evaluated higher in AFLD mice compared to those in GJDD or resveratroltreated mice.4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified,of which 3763 proteins were quantified and 946 differentially expressed proteins were screened.Compared with the control group,145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group.In addition,compared with the model group,92 proteins were up-regulated and 135 proteins were downregulated in the liver tissue of the GJDD group.15 differentially co-expressed proteins were found between every two groups(model group vs control group,GJDD group vs model group and GJDD group vs control group),which were involved in many biological processes.Among them,11 differentially co-expressed key proteins(Aox3,H1-5,Fabp5,Ces3a,Nudt7,Serpinb1a,Fkbp11,Rpl22l1,Keg1,Acss2 and Slco1a1)were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis.CONCLUSIONS:Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression,likely through the modulation of lipid metabolism,bile acid metabolism and with exertion of antioxidant stress.展开更多
Studying the genetic basis and regulatory mechanism of chrysanthemum lateral bud outgrowth is of great significance for reduction the production cost of cut chrysanthemum.To clarify the molecular basis of lateral bud ...Studying the genetic basis and regulatory mechanism of chrysanthemum lateral bud outgrowth is of great significance for reduction the production cost of cut chrysanthemum.To clarify the molecular basis of lateral bud elongation after removal of apical dominance in chrysanthemum,label-free quantification analysis was used to analyze the proteome changes after apical bud removal.Quantitative real-time PCR(qPCR)was used to analyze the changes in the expression of three plant hormone-related genes.A total of 440 differentially expressed proteins were successfully identified at three time points during the lateral bud elongation.The number of differentially expressed proteins in the three stages(24 h/0 h,48 h/0 h,48 h/24 h)were 219,332,and 97,respectively.The difference in expressed proteins in the three comparison stages mainly involves RNA processing and modification;translation,ribosomal structure and biogenesis;Posttranslational modification,protein turnover,and chaperones.Path analysis showed that there was various physiological activities in the process of lateral bud dormancy breaking and elongation,which involved energy metabolism,biosynthesis,signal transduction and stress response in the growth process of lateral buds.qPCR indicated that the expression of cytokinin synthesis related gene was significantly increased after the removal of apical dominance,while the expression of strigolactones synthesis related gene experiences a dramatic fall to promote the development of the lateral buds.However,there was a drop before a slight increase in the expression of the auxin synthesis related gene,which was mainly due to the removal of apical dominance that led to the loss of indoleacetic acid in the main stem.However,with formation of the new apical source,indoleacetic acid can be released again.展开更多
OBJECTIVE To explore the hypolipidemic mechanisms of the total phenylpropanoid glycosides fromLigustrum robustum(Roxb.) Blume(LRTPG) in hamsters using proteomics technique.METHODS The hamsters were fed with a high fat...OBJECTIVE To explore the hypolipidemic mechanisms of the total phenylpropanoid glycosides fromLigustrum robustum(Roxb.) Blume(LRTPG) in hamsters using proteomics technique.METHODS The hamsters were fed with a high fat diet to induce hyperlipidemia.Then LRTPG of high(1.2 g·kg^(-1)),medium(0.6 g·kg^(-1)) and low(0.3 g·kg^(-1)) doses were administrated daily for 4 weeks.Then the concentrations of plasma and hepatic lipids were determined using enzymic methods.The total protein was extracted from livers of the model group and the group treated with the high dose of LRTPG for label-free quantitative proteomics.RESULTS LRTPG significantly reduced the concentrations of plasma and hepatic lipids in hamsters fed a high fat diet.The proteomics data showed that a total of 2231 proteins were identified,and 549 proteins were found to be differentially expressed between the model group and the group treated with LRTPG.Among the 549 proteins,93 proteins were up-regulated and 59 proteins were down-regulated,and 397 proteins were absent or not.And some of these proteins were much related to the lipid metabolism.Further,gene ontology(GO) analysis indicated metabolic process,transport,oxidation-reduction process,phosphorylation,signal transduction,lipid metabolic process were the main biological processes that those differentially expressed proteins participated.KEGG pathway analysis showed that those proteins were involved in several metabolic pathways including oxidative phosphorylation,non-alcoholic fatty liver disease(NAFLD),PI3K-Akt signaling pathway,cAMP signaling pathway,cGMP-PKG signaling pathway.CONCLUSION The proteomics study could provide valuable clues to help us to understand the hypolipidemic mechanisms of LRTPG much better.展开更多
Ethylene participates in the regulation of numerous cellular events and biological processes, including wa- ter loss, during leaf and flower petal wilting. The diverse ethylene responses may be regulated via dynamic i...Ethylene participates in the regulation of numerous cellular events and biological processes, including wa- ter loss, during leaf and flower petal wilting. The diverse ethylene responses may be regulated via dynamic interplays between protein phosphorylation/dephosphorylation and ubiquitin/26S proteasome-mediated protein degradation and protease cleavage. To address how ethylene alters protein phosphorylation through multi-furcated signaling pathways, we performed a lSN stable isotope labelling-based, differential, and quantitative phosphoproteomics study on air- and ethylene-treated ethylene-insensitive Arabidopsis double loss-of-function mutant ein3-1/eill-1. Among 535 non-redundant phosphopeptides identified, two and four phosphopeptides were up- and downregulated by ethylene, respectively. Ethylene- regulated phosphorylation of aquaporin PIP2;1 is positively correlated with the water flux rate and water loss in leaf. Genetic studies in combination with quantitative proteomics, immunoblot analysis, protoplast swelling/shrinking experiments, and leaf water loss assays on the transgenic plants expressing both the wild-type and S280A/S283A-mutated PIP2;1 in the both Col-O and ein3eill genetic backgrounds suggest that ethylene increases water transport rate in Arabidopsis cells by enhancing S280/S283 phosphorylation at the C terminus of PIP2;1. Unknown kinase and/or phosphatase activities may participate in the initial up- regulation independent of the cellular functions of EIN3/EIL1. This finding contributes to our understanding of ethylene-regulated leaf wilting that is commonly observed during post-harvest storage of plant organs.展开更多
In the past decade,relative proteomic quantification using isobaric labeling technology has developed into a key tool for comparing the expression of proteins in biological samples.Although its multiplexing capacity a...In the past decade,relative proteomic quantification using isobaric labeling technology has developed into a key tool for comparing the expression of proteins in biological samples.Although its multiplexing capacity and flexibility make this a valuable technology for addressing various biological questions,its quantitative accuracy and precision still pose significant challenges to the reliability of its quantification results.Here,we give a detailed overview of the different kinds of isobaric mass tags and the advantages and disadvantages of the isobaric labeling method.We also discuss which precautions should be taken at each step of the isobaric labeling workflow,to obtain reliable quantification results in large-scale quantitative proteomics experiments.In the last section,we discuss the broad applications of the isobaric labeling technology in biological and clinical studies,with an emphasis on thermal proteome profiling and proteogenomics.展开更多
Kai-Xin-San consists of Ginseng Radix, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria at a ratio of 3:3:2:2. Kai-Xin-San has been widely used for the treatment of emotional disorders in China. However, no studi...Kai-Xin-San consists of Ginseng Radix, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria at a ratio of 3:3:2:2. Kai-Xin-San has been widely used for the treatment of emotional disorders in China. However, no studies have identified the key proteins implicated in response to Kai-Xin-San treatment. In this study, rat models of chronic mild stress were established using different stress methods over 28 days. After 14 days of stress stimulation, rats received daily intragastric administrations of 600 mg/kg Kai-Xin-San. The sucrose preference test was used to determine depression-like behavior in rats, while isobaric tags were used for relative and absolute quantitation-based proteomics to identify altered proteins following Kai-Xin-San treatment. Kai-Xin-San treatment for 2 weeks noticeably improved depression-like behaviors in rats with chronic mild stress. We identified 33 differentially expressed proteins: 7 were upregulated and 26 were downregulated. Functional analysis showed that these differentially expressed proteins participate in synaptic plasticity, neurodevelopment, and neurogenesis. Our results indicate that Kai-Xin-San has an important role in regulating the key node proteins in the synaptic signaling network, and are helpful to better understand the mechanism of the antidepressive effects of Kai-Xin-San and to provide objective theoretical support for its clinical application. The study was approved by the Ethics Committee for Animal Research from the Chinese PLA General Hospital(approval No. X5-2016-07) on March 5, 2016.展开更多
Respiratory syncytial virus(RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid(QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumoni...Respiratory syncytial virus(RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid(QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumonia. The present study was designed to reveal the potential targets and mechanism of action for QFOL by exploring its influence on the host cellular network following RSV infection. We investigated the serum proteomic changes and potential biomarkers in an RSV-infected mouse pneumonia model treated with QFOL. Eighteen BALB/c mice were randomly divided into three groups: RSV pneumonia model group(M), QFOL-treated group(Q) and the control group(C). Serum proteomes were analyzed and compared using a label-free quantitative LC-MS/MS approach. A total of 172 protein groups, 1009 proteins, and 1073 unique peptides were successfully identified. 51 differentially expressed proteins(DEPs) were identified(15 DEPs when M/C and 43 DEPs when Q/M; 7 DEPs in common). Classification and interaction network showed that these proteins participated in various biological processes including immune response, blood coagulation, complement activation, and so forth. Particularly, fibrinopeptide B(FpB) and heparin cofactor Ⅱ(HCII) were evaluated as important nodes in the interaction network, which was closely involved in coagulation and inflammation. Further, the Fp B level was increased in Group M but decreased in Group Q, while the HCII level exhibited the opposite trend. These findings not only indicated FpB and HCII as potential biomarkers and targets of QFOL in the treatment of RSV pneumonia, but also suggested a regulatory role of QFOL in the RSV-induced disturbance of coagulation and inflammation-coagulation interactions.展开更多
An effective symbiosis between legumes and rhizobia relies largely on diverse proteins at the plantrhizobium interface for material transportation and signal transduction during symbiotic nitrogen fixation.Here,we rep...An effective symbiosis between legumes and rhizobia relies largely on diverse proteins at the plantrhizobium interface for material transportation and signal transduction during symbiotic nitrogen fixation.Here,we report a comprehensive proteome atlas of the soybean symbiosome membrane(SM),peribacteroid space(PBS),and root microsomal fraction(RMF)using state-of-the-art label-free quantitative proteomic technology.In total,1759 soybean proteins with diverse functions are detected in the SM,and 1476 soybean proteins and 369 rhizobial proteins are detected in the PBS.The diversity of SM proteins detected suggests multiple origins of the SM.Quantitative comparative analysis highlights amino acid metabolism and nutrient uptake in the SM,indicative of the key pathways in nitrogen assimilation.The detection of soybean secretory proteins in the PBS and receptor-like kinases in the SM provides evidence for the likely extracellular property of the symbiosome and the potential signaling communication between both symbionts at the symbiotic interface.Our proteomic data provide clues for how some of the sophisticated regulation between soybean and rhizobium at the symbiotic interface is achieved,and suggest approaches for symbiosis engineering.展开更多
Inflammation is a defense mechanism associated with a wide range of diseases.Celastrol is a small molecule isolated from traditional Chinese medicine with potent anti-inflammation activity.In this study,we established...Inflammation is a defense mechanism associated with a wide range of diseases.Celastrol is a small molecule isolated from traditional Chinese medicine with potent anti-inflammation activity.In this study,we established an integrated quantitative proteomics strategy to investigate the acute response to celastrol treatment in a rat macrophage cell line challenged with lipopolysaccharide(LPS).Both stableisotopic based non-targeted quantitative profiling and PRM-based targeted quantitation methods were employed.Dimethyl-labeling based non-targeted profiling revealed 28 and 52 proteins that significantly up-and down-regulated by celastrol.Bioinformatics analysis pinpoint key signaling pathways affected.Seven proteins were selected for examining their time-dependent regulatory pattern in response to celastrol using targeted PRM quantitation.The abundance of mRNA at multiple time-points of selected proteins was also examined.Celastrol induced an acute response of selected key transcriptional factors in terms of mRNA or protein abundance within one hour.Interestingly,regulatory trend of mRNA and protein abundance suggested a novel dual mechanism of celastrol in the terms of acute antiinflammation.The integrated quantitative proteomic strategy established in this study constitutes an efficient workflow to characterize key components and their time-dependent regulatory pattern for monitoring drug response.展开更多
The local microenvironment is essential to stem cell-based therapy for ischemic stroke,and spatiotemporal changes of the microenvironment in the pathological process provide vital clues for understanding the therapeut...The local microenvironment is essential to stem cell-based therapy for ischemic stroke,and spatiotemporal changes of the microenvironment in the pathological process provide vital clues for understanding the therapeutic mechanisms.However,relevant studies on microenvironmental changes were mainly confined in the acute phase of stroke,and long-term changes remain unclear.This study aimed to investigate the microenvironmental changes in the subacute and chronic phases of ischemic stroke after stem cell transplantation.Herein,induced pluripotent stem cells(iPSCs)and neural stem cells(NSCs)were transplanted into the ischemic brain established by middle cerebral artery occlusion surgery.Positron emission tomography imaging and neurological tests were applied to evaluate the metabolic and neurofunctional alterations of rats transplanted with stem cells.Quantitative proteomics was employed to investigate the protein expression profiles in iPSCs-transplanted brain in the subacute and chronic phases of stroke.Compared with NSCs-transplanted rats,significantly increased glucose metabolism and neurofunctional scores were observed in iPSCs-transplanted rats.Subsequent proteomic data of iPSCs-transplanted rats identified a total of 39 differentially expressed proteins in the subacute and chronic phases,which are involved in various ischemic stroke-related biological processes,including neuronal survival,axonal remodeling,antioxidative stress,and mitochondrial function restoration.Taken together,our study indicated that iPSCs have a positive therapeutic effect in ischemic stroke and emphasized the wide-ranging microenvironmental changes in the subacute and chronic phases.展开更多
基金This study was reviewed and approved by the Maternal and child health hospital of Hubei Province(Approval No.20201025).
文摘BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients and their altered expression in the serum,proteomics techniques were deployed to detect the differentially expressed proteins(DEPs)of in the serum of GDM patients to further explore its pathogenesis,and find out possible biomarkers to forecast GDM occurrence.METHODS Subjects were divided into GDM and normal control groups according to the IADPSG diagnostic criteria.Serum samples were randomly selected from four cases in each group at 24-28 wk of gestation,and the blood samples were identified by applying iTRAQ technology combined with liquid chromatography-tandem mass spectrometry.Key proteins and signaling pathways associated with GDM were identified by bioinformatics analysis,and the expression of key proteins in serum from 12 wk to 16 wk of gestation was further verified using enzyme-linked immunosorbent assay (ELISA).RESULTS Forty-seven proteins were significantly differentially expressed by analyzing the serum samples between the GDMgravidas as well as the healthy ones. Among them, 31 proteins were found to be upregulated notably and the rest16 proteins were downregulated remarkably. Bioinformatic data report revealed abnormal expression of proteinsassociated with lipid metabolism, coagulation cascade activation, complement system and inflammatory responsein the GDM group. ELISA results showed that the contents of RBP4, as well as ANGPTL8, increased in the serumof GDM gravidas compared with the healthy ones, and this change was found to initiate from 12 wk to 16 wk ofgestation.CONCLUSION GDM symptoms may involve abnormalities in lipid metabolism, coagulation cascade activation, complementsystem and inflammatory response. RBP4 and ANGPTL8 are expected to be early predictors of GDM.
基金supported by the National Natural Science Foundation of China(Grant No.31701503)the Provincial Matching Funds to the National Foundation of Applied Technology Research and Development Program in Heilongjiang Province(Grant No.GX18B002)the National Key Research and Development Program of China(Grant No.2016YFD0300501).
文摘Direct-seeding of rice has become popular in recent years due to its low cost and convenience,however,hypoxic condition limits seedling establishment.In this study,weedy rice WR04-6 with high germination ability under anaerobic conditions was used as a gene donor,and we successfully improved the seedling establishment rate of rice cultivar Qishanzhan(QSZ)based on selection of a new rice line R42 from the recombinant inbred line population.R42 inherited high anaerobic germination(AG)ability,and was used for isobaric tags for relative and absolute quantitation(iTRAQ)-based comparative proteomic studies with QSZ to further explore the molecular mechanism of AG.A total of 719 differentially abundant proteins(DAPs)were shared by R42 and QSZ responded to AG,and thus defined as common response DAPs.A total of 300 DAPs that responded to AG were only identified from R42,which were defined as tolerance-specific DAPs.The common response and tolerance-specific DAPs had similar biochemical reaction processes and metabolic pathways in response to anoxic stress,however,they involved different proteins.The tolerance-specific DAPs were involved in amino acid metabolism,starch and sucrose metabolism,tricarboxylic acid cycle pathway,ethylene synthesis pathway,cell wall-associated proteins and activity of active oxygen scavenging enzyme.The in silico protein-protein interactions for the top 60 DAPs indicated that tolerance-specific DAPs had relatively independent protein interaction networks in response to an anoxic environment compared with common response DAPs.The results of physiological indicators showed thatα-amylase and superoxide dismutase activities of R42 were significantly increased under anoxic conditions compared with aerobic conditions.Multiple lines of evidence from western blot,physiological analysis and quantitatDirect seeding of rice has become popular in recent years due to its low cost and convenience,however,hypoxic conditions can limit seedling establishment.In the present study,weedy rice WR04-6 with high germination ability in anaerobic conditions was used as the gene donor and successfully improved the seedling establishment rate of rice cultivar Qishanzhan(QSZ)based on selection of a new rice line R42 from the recombinant inbred line(RIL)population.R42 inherited the had high anaerobic germination(AG)ability,which was used for the isobaric tags for relative and absolute quantitation(iTRAQ)based comparative proteomic studies with QSZ to further explore the molecular mechanism of AG.A total of 719 differentially abundant proteins(DAPs)shared by R42 and QSZ responded to AG and were thus defined as common response DAPs.A total of 300 DAPs that responded to AG were only identified from R42,which were defined as tolerance-specific DAPs.The common response and tolerance-specific DAPs had similar biochemical reaction processes and metabolic pathways in response to anoxic stress,however they involved different proteins.The 300 tolerance-specific DAPs were involved in amino acid metabolism,starch and sucrose metabolism,TCA cycle pathways,ethylene synthesis pathway,cell wall-associated proteins and activity of active oxygen scavenging enzyme.The in silico protein-protein interactions for the top 60 DAPs indicated that tolerance-specific DAPs had relatively independent protein interaction networks in response to an anoxic environment compared with common response DAPs.The results of physiological indicators showed thatα-amylase and SOD activities of R42 were significantly increased under anoxic conditions compared with aerobic conditions.Multiple lines of evidence from western blot,physiological analyses and real-time PCR jointly supported the reliability of proteomics data.In summary,our findings deepened the understanding of the molecular mechanism for the rice response to AG.ive real-time PCR jointly supported the reliability of proteomics data.In summary,our findings deepened the understanding of the molecular mechanism for the rice response to AG.
基金Supported by the National Key Research Development Program of China(No.2017YFC1404302)the National Natural Science Foundation of China(Nos.41425021,41706131)+1 种基金the Open Fund of CAS Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences(No.KLMEES201806)supported by the“Ten-Thousand Talents Program”for leading talents in science and technological innovation。
文摘Dinofl agellates are the major causative agents of harmful algal blooms in the global ocean and they usually form blooms under conditions of very low dissolved inorganic phosphorus(DIP).However,the mechanisms underpinning the dinofl agellate blooms remain unclear.Here,we quantitatively compared protein expression profi les of a marine dinofl agellate,Prorocentrum donghaiense,grown in inorganic P-replete,P-defi cient,and DIP-and dissolved organic phosphorus(DOP)-resupplied conditions by employing a Tandem Mass Tag(TMT)-based quantitative proteomic approach.Proteins involved in intracellular P reallocation,organic P,and non-P lipid utilization were up-regulated under the P-defi cient condition,while inorganic phosphate transporters varied insignifi cantly.In response to the P resupplementation,nitrogen metabolism,ribosome,porphyrin,and chlorophyll metabolism were up-regulated,while lysosome,and starch and sucrose metabolism were down-regulated.Notably,photosynthesis was up-regulated and secondary metabolism was down-regulated only in the DIP-resupplied cells,whereas amino acid metabolism and vitamin B6 metabolism were up-regulated in the DOP-resupplied cells,indicating diff erential response mechanisms of P.donghaiense to DIP or DOP resupplementation.Our results indicated that P.donghaiense initiated multiple strategies in response to an ambient inorganic P-defi ciency,and its efficient DOP assimilation by providing both P and carbon sources might be a key factor driving bloom formations of P.donghaiense in a low DIP environment.
基金supported by the National Key Research and Development Plan[2017YFD0100706]National Natural Science Foundation of China[31871618].
文摘Enhancing photosynthesis efficiency is considered as one of the most crucial targets during wheat breeding.However,the molecular basis underlying high photosynthesis efficiency is not well understood up to now.In this study,we investigated the protein expression profile of wheat Jimai5265yg mutant,which is a yellow-green mutant with chlorophylls b deficiency but high photosynthesis efficiency.Though TMT-labeling quantitative proteomics analysis,a total of 72 differential expressed proteins(DEPs)were obtained between the mutant and wild type(WT).GO analysis found that they significantly enriched in thylakoid membrane,pigment binding,magnesium chelatase activity and response to light intensity.KEGG analysis showed that they involved in photosynthesis-antenna protein as well as porphyrin and chlorophyll metabolism.Finally,118 RNA editing events were found between mutant and WT genotype.The A to C editing in the 3-UTR of TraesCS6D02G401500 lead to its high expression in mutant through removing the inhibition of tae-miR9781,which might have vital role in regulating the yellow-green mutant.This study provided some useful clues about the molecular basis of Jimai5265yg mutant as well as chlorophylls metabolism in wheat.
基金supported by the grants from Shanghai Shuguang Plan Project,No.18SG15(to SC)Shanghai Outstanding Young Scholars Project+2 种基金Shanghai Talent Development Project,No.2019044(to SC)Medical-engineering cross fund of Shanghai Jiao Tong University,No.YG2022QN009(to QZ)the National Natural Science Foundation of China,No.82201558(to QZ)。
文摘Biomarke rs are required for the early detection,prognosis prediction,and monitoring of amyotrophic lateral sclerosis,a progressive disease.Proteomics is an unbiased and quantitative method that can be used to detect neurochemical signatures to aid in the identification of candidate biomarke rs.In this study,we used a label-free quantitative proteomics approach to screen for substantially differentially regulated proteins in ten patients with sporadic amyotrophic lateral scle rosis compared with five healthy controls.Su bstantial upregulation of serum proteins related to multiple functional clusters was observed in patients with spo radic amyotrophic lateral sclerosis.Potential biomarke rs were selected based on functionality and expression specificity.To validate the proteomics profiles,blood samples from an additional cohort comprising 100 patients with sporadic amyotrophic lateral sclerosis and 100 healthy controls were subjected to enzyme-linked immunosorbent assay.Eight substantially upregulated serum proteins in patients with spora dic amyotrophic lateral sclerosis were selected,of which the cathelicidin-related antimicrobial peptide demonstrated the best discriminative ability between patients with sporadic amyotrophic lateral sclerosis and healthy controls(area under the curve[AUC]=0.713,P<0.0001).To further enhance diagnostic accuracy,a multi-protein combined discriminant algorithm was developed incorporating five proteins(hemoglobin beta,cathelicidin-related antimicrobial peptide,talin-1,zyxin,and translationally-controlled tumor protein).The algo rithm achieved an AUC of 0.811 and a P-value of<0.0001,resulting in 79%sensitivity and 71%specificity for the diagnosis of sporadic amyotrophic lateral scle rosis.Subsequently,the ability of candidate biomarkers to discriminate between early-stage amyotrophic lateral sclerosis patients and controls,as well as patients with different disease severities,was examined.A two-protein panel comprising talin-1 and translationally-controlled tumor protein effectively distinguished early-stage amyotrophic lateral sclerosis patients from controls(AUC=0.766,P<0.0001).Moreove r,the expression of three proteins(FK506 binding protein 1A,cathelicidin-related antimicrobial peptide,and hemoglobin beta-1)was found to increase with disease progression.The proteomic signatures developed in this study may help facilitate early diagnosis and monitor the progression of sporadic amyotrophic lateral sclerosis when used in co mbination with curre nt clinical-based parameters.
基金supported by National Key Research&Development Program of China,No.2016YFC11011601,2017YFA0104701the Youth Cultivation Project of Military Medical Science,China,No.15QNP091(to YW)People’s Liberation Army Youth Training Project for Medical Science of China,No.16QNP144(to YW)
文摘Sensory and motor nerve fibers of peripheral nerves have different anatomies and regeneration functions after injury. To gain a clear understanding of the biological processes behind these differences, we used a labeling technique termed isobaric tags for relative and absolute quantitation to investigate the protein profiles of spinal nerve tissues from Sprague-Dawley rats. In response to Wallerian degeneration, a total of 626 proteins were screened in sensory nerves, of which 368 were upregulated and 258 were downregulated. In addition, 637 proteins were screened in motor nerves, of which 372 were upregulated and 265 were downregulated. All identified proteins were analyzed using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of bioinformatics, and the presence of several key proteins closely related to Wallerian degeneration were tested and verified using quantitative real-time polymerase chain reaction analyses. The differentially expressed proteins only identified in the sensory nerves were mainly relevant to various biological processes that included cell-cell adhesion, carbohydrate metabolic processes and cell adhesion, whereas differentially expressed proteins only identified in the motor nerves were mainly relevant to biological processes associated with the glycolytic process, cell redox homeostasis, and protein folding. In the aspect of the cellular component, the differentially expressed proteins in the sensory and motor nerves were commonly related to extracellular exosomes, the myelin sheath, and focal adhesion. According to the Kyoto Encyclopedia of Genes and Genomes, the differentially expressed proteins identified are primarily related to various types of metabolic pathways. In conclusion, the present study screened differentially expressed proteins to reveal more about the differences and similarities between sensory and motor nerves during Wallerian degeneration. The present findings could provide a reference point for a future investigation into the differences between sensory and motor nerves in Wallerian degeneration and the characteristics of peripheral nerve regeneration. The study was approved by the Ethics Committee of the Chinese PLA General Hospital, China(approval No. 2016-x9-07) in September 2016.
基金supported by the National Key Technology R&D Program of China (2012BAD12B02-5)the Research Program of the State Key Laboratory of Animal Nutrition, China (2004DA125184G1103)the Synergetic Innovation Center of Food Safety and Nutrition, China
文摘Dairy cows undergo tremendous changes in physiological, metabolism and the immune function from pregnancy to lac- tation that are associated with cows being susceptible to metabolic and infectious diseases. The objective of this study is to investigate the changes of plasma proteome on 21 d before expected calving and 1 d after calving from dairy cows using an integrated proteomic approach consisting of minor abundance protein enrichment by ProteoMiner beads, protein labeling by isobaric tags for relative and absolute quantification, and protein identification by liquid chromatography coupled with tandem mass spectrometry. Nineteen proteins were changed around the time of calving. These proteins were asso- ciated with response to stress, including acute-phase response and defense response, based on the proteins annotation. In particular, three up-regulated proteins after calving including factor V, a2-antiplasmin and prothrombin were assigned into the complement and coagulation pathway. These results may provide new information in elucidating host response to lactation and parturition stress, and inflammatory-like conditions at the protein level. Differential proteins may serve as potential markers to regulate the lactation and parturition stress in periparturient dairy cows.
基金supported by the Regional Demonstration Project of Marine Economic Innovation and Development(2013 and 2016)National Natural Science Foundation of China(31800117)the K.C.Wong Magna Fund offered by the Ningbo University。
文摘Long-chain omega-3 polyunsaturated fatty acids(LC-PUFAs),known for having many health benefits,are usually present in three forms:triglycerides(TG),ethyl esters(EE),and phospholipid(PL).In this study,the effects of these three LC-PUFAs forms(fish oil for TG and EE,krill oil for PL)on the obese mice were compared,and the proteomic changes that focused on lipid metabolism were evaluated via label-free quantitative proteomics analysis.Compared with the model group,all three of the LC-PUFA form supplementations(labeled as the FO-TG group,FO-EE group and KO-PL groups)could significantly reduce body weight gain(P<0.01).Low-density lipoprotein cholesterol levels were significantly decreased,whereas high-density lipoprotein cholesterol levels were significantly increased in the FO-TG group and FO-EE group(P<0.01),and especially in the PL group(P<0.001).Furthermore,proteomics analysis results suggested that some differentially expressed genes involved in the fatty acid degradation and oxidation pathways had a higher expression fold in the KO-PL group than in the FO-TG or FO-EE groups.Our results showed that dietary LC-PUFAs can reduce fat deposition and inhibit lipogenesis in the liver by upregulating the expression of proteins that are involved in the fatty acid degradation and oxidation pathways.Additionally,KO-PL elicits stronger effects than FO-TG or FO-EE.
文摘Nerve transfer is the most common treatment for total brachial plexus avulsion injury. After nerve transfer, the movement of the injured limb may be activated by certain movements of the healthy limb at the early stage of recovery, i.e., trans-hemispheric reorganization. Pre- vious studies have focused on functional magnetic resonance imaging and changes in brain-derived neurotrophic factor and growth asso- ciated protein 43, but there have been no proteomics studies. In this study, we designed a rat model of total brachial plexus avulsion injury involving contralateral C7 nerve transfer. Isobaric tags for relative and absolute quantitation and western blot assay were then used to screen differentially expressed proteins in bilateral motor cortices. We found that most differentially expressed proteins in both cortices of upper limb were associated with nervous system development and function (including neuron differentiation and development, axonogenesis, and guidance), microtubule and cytoskeleton organization, synapse plasticity, and transmission of nerve impulses. Two key differentially expressed proteins, neurofilament light (NFL) and Thy-1, were identified. In contralateral cortex, the NFL level was upregulated 2 weeks after transfer and downregulated at 1 and 5 months. The Thy-1 level was upregulated from 1 to 5 months. In the affected cortex, the NFL level increased gradually from 1 to 5 months. Western blot results of key differentially expressed proteins were consistent with the proteom- ic findings. These results indicate that NFL and Thy-1 play an important role in trans-hemispheric organization following total brachial plexus root avulsion and contralateral C7 nerve transfer.
基金supported by the National Natural Science Foundation of China,No.816019591003263(to JXW)the National Basic Research Program of China(973 Program),No.2014CB542203(to LC)
文摘In treating patients with obstetric brachial plexus palsy,we noticed that denervated intrinsic muscles of the hand become irreversibly atrophic at a faster than denervated biceps.In a rat model of obstetric brachial plexus palsy,denervated intrinsic musculature of the forepaw entered the irreversible atrophy far earlier than denervated biceps.In this study,isobaric tags for relative and absolute quantitation were examined in the intrinsic musculature of forepaw and biceps on denervated and normal sides at 3 and 5 weeks to identify dysregulated proteins.Enrichment of pathways mapped by those proteins was analyzed by Kyoto Encyclopedia of Genes and Genomes analysis.At 3 weeks,119 dysregulated proteins in denervated intrinsic musculature of the forepaw were mapped to nine pathways for muscle regulation,while 67 dysregulated proteins were mapped to three such pathways at 5 weeks.At 3 weeks,27 upregulated proteins were mapped to five pathways involving inflammation and apoptosis,while two upregulated proteins were mapped to one such pathway at 5 weeks.At 3 and 5 weeks,53 proteins from pathways involving regrowth and differentiation were downregulated.At 3 weeks,64 dysregulated proteins in denervated biceps were mapped to five pathways involving muscle regulation,while,five dysregulated proteins were mapped to three such pathways at 5 weeks.One protein mapped to inflammation and apoptotic pathways was upregulated from one pathway at 3 weeks,while three proteins were downregulated from two other pathways at 5 weeks.Four proteins mapped to regrowth and differentiation pathways were upregulated from three pathways at 3 weeks,while two proteins were downregulated in another pathway at 5 weeks.These results implicated inflammation and apoptosis as critical factors aggravating atrophy of denervated intrinsic muscles of the hand during obstetric brachial plexus palsy.All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Fudan University,China(approval No.DF-325)in January 2015.
基金National Science Foundation-funded Project:the Study on the Changes of Energy Metabolism and Molecular Regulation Mechanism of Alcoholic Fatty Liver based on Sirtuins1-Adenosine Monophosphate-Activated Protein Kinase Signal System and the Intervention of Gehua Jiejiu dizhi decoction(No.81660752)Basic Research Project of Guizhou Provincial Science and Technology Plan:Study on the Mechanism of Sirtuins1 Mediated Deacetylation in the Regulation of Alcoholic Fatty Liver Metabolism and the Intervention of Gehua Jiejiu Dizhi Tang[QianKeHe Fundamentals-ZK[2023]General 410]。
文摘OBJECTIVE:To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction(葛花解酒涤脂汤,GJDD)on alcoholic fatty live disease(AFLD)by using proteomic methods.METHODS:The male C57BL/6J mouse were randomly divided into four groups:control group,model group,GJDD group and resveratrol group.After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method,the GJDD group and resveratrol group were intragastrically administered with GJDD(4900 mg/kg)and resveratrol(400 mg/kg)respectively,once a day for 9 d.The fat deposition of liver tissue was observed and evaluated by oil red O(ORO)staining.4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group.The differentially expressed proteins were screened according to protein expression differential multiples,and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment.Finally,expression validation of the differentially co-expressed proteins from control group,model group and GJDD group were verified by targeted proteomics quantification techniques.RESULTS:In semiquantitative analyses of ORO,all kinds of steatosis(ToS,MaS,and MiS)were evaluated higher in AFLD mice compared to those in GJDD or resveratroltreated mice.4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified,of which 3763 proteins were quantified and 946 differentially expressed proteins were screened.Compared with the control group,145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group.In addition,compared with the model group,92 proteins were up-regulated and 135 proteins were downregulated in the liver tissue of the GJDD group.15 differentially co-expressed proteins were found between every two groups(model group vs control group,GJDD group vs model group and GJDD group vs control group),which were involved in many biological processes.Among them,11 differentially co-expressed key proteins(Aox3,H1-5,Fabp5,Ces3a,Nudt7,Serpinb1a,Fkbp11,Rpl22l1,Keg1,Acss2 and Slco1a1)were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis.CONCLUSIONS:Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression,likely through the modulation of lipid metabolism,bile acid metabolism and with exertion of antioxidant stress.
基金This work was supported by grants from the National Natural Science Foundation of China(Grant No.31800601).
文摘Studying the genetic basis and regulatory mechanism of chrysanthemum lateral bud outgrowth is of great significance for reduction the production cost of cut chrysanthemum.To clarify the molecular basis of lateral bud elongation after removal of apical dominance in chrysanthemum,label-free quantification analysis was used to analyze the proteome changes after apical bud removal.Quantitative real-time PCR(qPCR)was used to analyze the changes in the expression of three plant hormone-related genes.A total of 440 differentially expressed proteins were successfully identified at three time points during the lateral bud elongation.The number of differentially expressed proteins in the three stages(24 h/0 h,48 h/0 h,48 h/24 h)were 219,332,and 97,respectively.The difference in expressed proteins in the three comparison stages mainly involves RNA processing and modification;translation,ribosomal structure and biogenesis;Posttranslational modification,protein turnover,and chaperones.Path analysis showed that there was various physiological activities in the process of lateral bud dormancy breaking and elongation,which involved energy metabolism,biosynthesis,signal transduction and stress response in the growth process of lateral buds.qPCR indicated that the expression of cytokinin synthesis related gene was significantly increased after the removal of apical dominance,while the expression of strigolactones synthesis related gene experiences a dramatic fall to promote the development of the lateral buds.However,there was a drop before a slight increase in the expression of the auxin synthesis related gene,which was mainly due to the removal of apical dominance that led to the loss of indoleacetic acid in the main stem.However,with formation of the new apical source,indoleacetic acid can be released again.
基金supported by the PUMC(Peking Union Medical College)Youth Fund(3332015142) National Natural Science Foundation of China(81703746)
文摘OBJECTIVE To explore the hypolipidemic mechanisms of the total phenylpropanoid glycosides fromLigustrum robustum(Roxb.) Blume(LRTPG) in hamsters using proteomics technique.METHODS The hamsters were fed with a high fat diet to induce hyperlipidemia.Then LRTPG of high(1.2 g·kg^(-1)),medium(0.6 g·kg^(-1)) and low(0.3 g·kg^(-1)) doses were administrated daily for 4 weeks.Then the concentrations of plasma and hepatic lipids were determined using enzymic methods.The total protein was extracted from livers of the model group and the group treated with the high dose of LRTPG for label-free quantitative proteomics.RESULTS LRTPG significantly reduced the concentrations of plasma and hepatic lipids in hamsters fed a high fat diet.The proteomics data showed that a total of 2231 proteins were identified,and 549 proteins were found to be differentially expressed between the model group and the group treated with LRTPG.Among the 549 proteins,93 proteins were up-regulated and 59 proteins were down-regulated,and 397 proteins were absent or not.And some of these proteins were much related to the lipid metabolism.Further,gene ontology(GO) analysis indicated metabolic process,transport,oxidation-reduction process,phosphorylation,signal transduction,lipid metabolic process were the main biological processes that those differentially expressed proteins participated.KEGG pathway analysis showed that those proteins were involved in several metabolic pathways including oxidative phosphorylation,non-alcoholic fatty liver disease(NAFLD),PI3K-Akt signaling pathway,cAMP signaling pathway,cGMP-PKG signaling pathway.CONCLUSION The proteomics study could provide valuable clues to help us to understand the hypolipidemic mechanisms of LRTPG much better.
文摘Ethylene participates in the regulation of numerous cellular events and biological processes, including wa- ter loss, during leaf and flower petal wilting. The diverse ethylene responses may be regulated via dynamic interplays between protein phosphorylation/dephosphorylation and ubiquitin/26S proteasome-mediated protein degradation and protease cleavage. To address how ethylene alters protein phosphorylation through multi-furcated signaling pathways, we performed a lSN stable isotope labelling-based, differential, and quantitative phosphoproteomics study on air- and ethylene-treated ethylene-insensitive Arabidopsis double loss-of-function mutant ein3-1/eill-1. Among 535 non-redundant phosphopeptides identified, two and four phosphopeptides were up- and downregulated by ethylene, respectively. Ethylene- regulated phosphorylation of aquaporin PIP2;1 is positively correlated with the water flux rate and water loss in leaf. Genetic studies in combination with quantitative proteomics, immunoblot analysis, protoplast swelling/shrinking experiments, and leaf water loss assays on the transgenic plants expressing both the wild-type and S280A/S283A-mutated PIP2;1 in the both Col-O and ein3eill genetic backgrounds suggest that ethylene increases water transport rate in Arabidopsis cells by enhancing S280/S283 phosphorylation at the C terminus of PIP2;1. Unknown kinase and/or phosphatase activities may participate in the initial up- regulation independent of the cellular functions of EIN3/EIL1. This finding contributes to our understanding of ethylene-regulated leaf wilting that is commonly observed during post-harvest storage of plant organs.
基金supported by grants from the National Key R&D Program of China (Grant Nos. 2018YFA0507801 and 2018YFA0507103)the National Natural Science Foundation of China (Grant No. 31900925)the China Scholarship Council (CSC)
文摘In the past decade,relative proteomic quantification using isobaric labeling technology has developed into a key tool for comparing the expression of proteins in biological samples.Although its multiplexing capacity and flexibility make this a valuable technology for addressing various biological questions,its quantitative accuracy and precision still pose significant challenges to the reliability of its quantification results.Here,we give a detailed overview of the different kinds of isobaric mass tags and the advantages and disadvantages of the isobaric labeling method.We also discuss which precautions should be taken at each step of the isobaric labeling workflow,to obtain reliable quantification results in large-scale quantitative proteomics experiments.In the last section,we discuss the broad applications of the isobaric labeling technology in biological and clinical studies,with an emphasis on thermal proteome profiling and proteogenomics.
基金supported by the National Natural Science Foundation of China,No.81573876(to YH)
文摘Kai-Xin-San consists of Ginseng Radix, Polygalae Radix, Acori Tatarinowii Rhizoma, and Poria at a ratio of 3:3:2:2. Kai-Xin-San has been widely used for the treatment of emotional disorders in China. However, no studies have identified the key proteins implicated in response to Kai-Xin-San treatment. In this study, rat models of chronic mild stress were established using different stress methods over 28 days. After 14 days of stress stimulation, rats received daily intragastric administrations of 600 mg/kg Kai-Xin-San. The sucrose preference test was used to determine depression-like behavior in rats, while isobaric tags were used for relative and absolute quantitation-based proteomics to identify altered proteins following Kai-Xin-San treatment. Kai-Xin-San treatment for 2 weeks noticeably improved depression-like behaviors in rats with chronic mild stress. We identified 33 differentially expressed proteins: 7 were upregulated and 26 were downregulated. Functional analysis showed that these differentially expressed proteins participate in synaptic plasticity, neurodevelopment, and neurogenesis. Our results indicate that Kai-Xin-San has an important role in regulating the key node proteins in the synaptic signaling network, and are helpful to better understand the mechanism of the antidepressive effects of Kai-Xin-San and to provide objective theoretical support for its clinical application. The study was approved by the Ethics Committee for Animal Research from the Chinese PLA General Hospital(approval No. X5-2016-07) on March 5, 2016.
基金supported by the National Natural Science Foundation of China(No.81574025)the Open Project Program of Jiangsu Key Laboratory of Pediatric Respiratory Disease,Nanjing University of Chinese Medicine(No.JKLPRD201410)
文摘Respiratory syncytial virus(RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid(QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumonia. The present study was designed to reveal the potential targets and mechanism of action for QFOL by exploring its influence on the host cellular network following RSV infection. We investigated the serum proteomic changes and potential biomarkers in an RSV-infected mouse pneumonia model treated with QFOL. Eighteen BALB/c mice were randomly divided into three groups: RSV pneumonia model group(M), QFOL-treated group(Q) and the control group(C). Serum proteomes were analyzed and compared using a label-free quantitative LC-MS/MS approach. A total of 172 protein groups, 1009 proteins, and 1073 unique peptides were successfully identified. 51 differentially expressed proteins(DEPs) were identified(15 DEPs when M/C and 43 DEPs when Q/M; 7 DEPs in common). Classification and interaction network showed that these proteins participated in various biological processes including immune response, blood coagulation, complement activation, and so forth. Particularly, fibrinopeptide B(FpB) and heparin cofactor Ⅱ(HCII) were evaluated as important nodes in the interaction network, which was closely involved in coagulation and inflammation. Further, the Fp B level was increased in Group M but decreased in Group Q, while the HCII level exhibited the opposite trend. These findings not only indicated FpB and HCII as potential biomarkers and targets of QFOL in the treatment of RSV pneumonia, but also suggested a regulatory role of QFOL in the RSV-induced disturbance of coagulation and inflammation-coagulation interactions.
基金the grant support to W.-C.Y.from the MOST(2016YFA0500502)NSFC(31161130534),ChinaY.L.from the Chinese Academy of Sciences(YSBR-011,ZDRW-ZS2019-2,KFZD-SW-112-02-05)。
文摘An effective symbiosis between legumes and rhizobia relies largely on diverse proteins at the plantrhizobium interface for material transportation and signal transduction during symbiotic nitrogen fixation.Here,we report a comprehensive proteome atlas of the soybean symbiosome membrane(SM),peribacteroid space(PBS),and root microsomal fraction(RMF)using state-of-the-art label-free quantitative proteomic technology.In total,1759 soybean proteins with diverse functions are detected in the SM,and 1476 soybean proteins and 369 rhizobial proteins are detected in the PBS.The diversity of SM proteins detected suggests multiple origins of the SM.Quantitative comparative analysis highlights amino acid metabolism and nutrient uptake in the SM,indicative of the key pathways in nitrogen assimilation.The detection of soybean secretory proteins in the PBS and receptor-like kinases in the SM provides evidence for the likely extracellular property of the symbiosome and the potential signaling communication between both symbionts at the symbiotic interface.Our proteomic data provide clues for how some of the sophisticated regulation between soybean and rhizobium at the symbiotic interface is achieved,and suggest approaches for symbiosis engineering.
基金supported by grants from the National Natural Science Foundation of China(No.21705137)China and donation from Kwok Chung Bo Fun Charitable Fund for the establishment of the Kwok Yat Wai Endowed Chair of Environmental and Biological Analysis。
文摘Inflammation is a defense mechanism associated with a wide range of diseases.Celastrol is a small molecule isolated from traditional Chinese medicine with potent anti-inflammation activity.In this study,we established an integrated quantitative proteomics strategy to investigate the acute response to celastrol treatment in a rat macrophage cell line challenged with lipopolysaccharide(LPS).Both stableisotopic based non-targeted quantitative profiling and PRM-based targeted quantitation methods were employed.Dimethyl-labeling based non-targeted profiling revealed 28 and 52 proteins that significantly up-and down-regulated by celastrol.Bioinformatics analysis pinpoint key signaling pathways affected.Seven proteins were selected for examining their time-dependent regulatory pattern in response to celastrol using targeted PRM quantitation.The abundance of mRNA at multiple time-points of selected proteins was also examined.Celastrol induced an acute response of selected key transcriptional factors in terms of mRNA or protein abundance within one hour.Interestingly,regulatory trend of mRNA and protein abundance suggested a novel dual mechanism of celastrol in the terms of acute antiinflammation.The integrated quantitative proteomic strategy established in this study constitutes an efficient workflow to characterize key components and their time-dependent regulatory pattern for monitoring drug response.
基金sponsored by the National Key Research and Development Program of China(No.2016YFA0100-900)and the Fund for Shanxi“1331 Project Key Innovative Research Team.
文摘The local microenvironment is essential to stem cell-based therapy for ischemic stroke,and spatiotemporal changes of the microenvironment in the pathological process provide vital clues for understanding the therapeutic mechanisms.However,relevant studies on microenvironmental changes were mainly confined in the acute phase of stroke,and long-term changes remain unclear.This study aimed to investigate the microenvironmental changes in the subacute and chronic phases of ischemic stroke after stem cell transplantation.Herein,induced pluripotent stem cells(iPSCs)and neural stem cells(NSCs)were transplanted into the ischemic brain established by middle cerebral artery occlusion surgery.Positron emission tomography imaging and neurological tests were applied to evaluate the metabolic and neurofunctional alterations of rats transplanted with stem cells.Quantitative proteomics was employed to investigate the protein expression profiles in iPSCs-transplanted brain in the subacute and chronic phases of stroke.Compared with NSCs-transplanted rats,significantly increased glucose metabolism and neurofunctional scores were observed in iPSCs-transplanted rats.Subsequent proteomic data of iPSCs-transplanted rats identified a total of 39 differentially expressed proteins in the subacute and chronic phases,which are involved in various ischemic stroke-related biological processes,including neuronal survival,axonal remodeling,antioxidative stress,and mitochondrial function restoration.Taken together,our study indicated that iPSCs have a positive therapeutic effect in ischemic stroke and emphasized the wide-ranging microenvironmental changes in the subacute and chronic phases.