BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To e...BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs.展开更多
Objective:To examine the effect of icariin plus curcumol on prostate cancer cells PC3 and elucidate the underlying mechanisms.Methods:We employed the Cell Counting Kit 8 assay and colony formation assay to assess cell...Objective:To examine the effect of icariin plus curcumol on prostate cancer cells PC3 and elucidate the underlying mechanisms.Methods:We employed the Cell Counting Kit 8 assay and colony formation assay to assess cell viability and proliferation.Autophagy expression was analyzed using monodansylcadaverine staining.Immunofluorescence and Western blot analyses were used to evaluate protein expressions related to autophagy,pyroptosis,and the mTOR pathway.Cellular damage was examined using the lactate dehydrogenase assay.Moreover,cathepsin B and NLRP3 were detected by co-immunoprecipitation.Results:Icariin plus curcumol led to a decrease in PC3 cell proliferation and an enhancement of autophagy.The levels of LC3-Ⅱ/LC3-Ⅰand beclin-1 were increased,while the levels of p62 and mTOR were decreased after treatment with icariin plus curcumol.These changes were reversed upon overexpression of mTOR.Furthermore,3-methyladenine resulted in a decrease in inflammatory cytokines,pyroptosis-related protein levels,and lactate dehydrogenase concentration,compared to the icariin plus curcumol group.Inhibiting cathepsin B reversed the regulatory effects of icariin plus curcumol.Conclusions:Icariin plus curcumol demonstrates great potential as a therapeutic agent for castration-resistant prostate cancer by enhancing autophagy via the mTOR pathway and promoting pyroptosis mediated by cathepsin B.These findings provide valuable insights into the molecular mechanisms underlying the therapeutic potential of icariin and curcumol for prostate cancer treatment.展开更多
Objective:To explore the mechanism by which icariin alleviates viral myocarditis.Methods:CVB3-induced cardiomyocytes were used as an in vitro model of viral myocarditis to assess the effects of icariin treatment on ce...Objective:To explore the mechanism by which icariin alleviates viral myocarditis.Methods:CVB3-induced cardiomyocytes were used as an in vitro model of viral myocarditis to assess the effects of icariin treatment on cell viability,inflammation,and apoptosis.Moreover,the effects of icariin on ferroptosis and TLR4 signaling were assessed.After AC16 cells were transfected with TLR4 overexpression plasmids,the role of TLR4 in mediating the regulatory effect of icariin in viral myocarditis was investigated.Results:Icariin significantly elevated cell viability and reduced inflammatory factors TNF-α,IL-1β,IL-6,and IL-18.Flow cytometry revealed that icariin decreased apoptosis rate,and the protein expression of Bax and cleaved caspase 3 and 9 in CVB3-induced cardiomyocytes.Additionally,it suppressed ferroptosis including lipid peroxidation and ferrous ion,as well as the TLR4 signaling.However,TLR4 overexpression abrogated the modulatory effects of icariin.Conclusions:Icariin mitigates CVB3-induced myocardial injury by inhibiting TLR4-mediated ferroptosis.Further animal study is needed to verify its efficacy.展开更多
Objective Icariin(ICA)has a good neuroprotective effect and can upregulate neuronal basal autophagy in naturally aging rats.Mitochondrial dysfunction is associated with brain aging-related neurodegenerative diseases.A...Objective Icariin(ICA)has a good neuroprotective effect and can upregulate neuronal basal autophagy in naturally aging rats.Mitochondrial dysfunction is associated with brain aging-related neurodegenerative diseases.Abnormal opening of the mitochondrial permeability transition pore(mPTP)is a crucial factor in mitochondrial dysfunction and is associated with excessive autophagy.This study aimed to explore that ICA protects against neuronal injury by blocking the mPTP opening and down-regulating autophagy levels in a D-galactose(D-gal)-induced cell injury model.Methods A cell model of neuronal injury was established in rat pheochromocytoma cells(PC12 cells)treated with 200 mmol/L D-gal for 48 h.In this cell model,PC12 cells were pre-treated with different concentrations of ICA for 24 h.MTT was used to detect cell viability.Senescence associatedβ-galactosidase(SA-β-Gal)staining was used to observe cell senescence.Western blot analysis was performed to detect the expression levels of a senescence-related protein(p21),autophagy markers(LC3B,p62,Atg7,Atg5 and Beclin 1),mitochondrial fission and fusion-related proteins(Drp1,Mfn2 and Opa1),and mitophagy markers(Pink1 and Parkin).The changes of autophagic flow were detected by using mRFP-GFP-LC3 adenovirus.The intracellular ultrastructure was observed by transmission electron microscopy.Immunofluorescence was used to detect mPTP,mitochondrial membrane potential(MMP),mitochondrial reactive oxygen species(mtROS)and ROS levels.ROS and apoptosis levels were detected by flow cytometry.Results D-gal treatment significantly decreased the viability of PC12 cells,and markedly increased the SA-β-Gal positive cells as compared to the control group.With the D-gal stimulation,the expression of p21 was significantly up-regulated.Furthermore,D-gal stimulation resulted in an elevated LC3B II/I ratio and decreased p62 expression.Meanwhile,autophagosomes and autolysosomes were significantly increased,indicating abnormal activation of autophagy levels.In addition,in this D-gal-induced model of cell injury,the mPTP was abnormally open,the ROS generation was continuously increased,the MMP was gradually decreased,and the apoptosis was increased.ICA effectively improved mitochondrial dysfunction to protect against D-gal-induced cell injury and apoptosis.It strongly inhibited excessive autophagy by blocking the opening of the mPTP.Cotreatment with ICA and an mPTP inhibitor(cyclosporin A)did not ameliorate mitochondrial dysfunction.However,the protective effects were attenuated by cotreatment with ICA and an mPTP activator(lonidamine).Conclusion ICA inhibits the activation of excessive autophagy and thus improves mitochondrial dysfunction by blocking the mPTP opening.展开更多
Icariin is the most prevalent component of the medicinal herb Herba Epimedii.Icariin exhibits many medicinal properties,including anti-cancer impact and osteoprotective and neuroprotective effects.The goal of this stu...Icariin is the most prevalent component of the medicinal herb Herba Epimedii.Icariin exhibits many medicinal properties,including anti-cancer impact and osteoprotective and neuroprotective effects.The goal of this study was to use bibliometric analysis to find and describe the top 100 papers about Icariin that had received the most citations.The Science Citation Index-Expanded(SCI-E)of the Web of Science Core Collection was used to find publications on Icariin(WoSCC).Descriptive analysis was conducted using VOSviewer software.There were 1473 articles about Icariin in all.The top 100 papers were published between 1996 and 2024 and received citations in the range of 55 to 390.The country that has contributed the most to Icariin research is China(84).The most productive institution was Fudan University.The most published journal was Phytomedicine.The research hotspots of Icariin mainly focus on the following aspects:research on Icariin treatment of sex hormone-related osteoporosis and erectile function;The effect of Icariin on cells by regulating oxidative stress,apoptosis,and proliferation;the mechanism of Icariin in the treatment of cancer;the neuroprotective effect of Icariin in central nervous diseases,such as Alzheimer's disease,Parkinson's disease,and depression.Future research should focus on further elucidating Icariin's anti-tumor effects,its application in cartilage tissue engineering and orthopedic biomaterials,and developing novel drug delivery systems to enhance its bioavailability.This research contributed essential knowledge to the study of Icariin.These results may be used in new study areas and to direct drug development.展开更多
This article summarized the research progress on the antidepressant mechanism of icariin II,mainly elaborating on its mechanism from five aspects:GABAergic nervous system,inflammatory response,oxidative stress,neurotr...This article summarized the research progress on the antidepressant mechanism of icariin II,mainly elaborating on its mechanism from five aspects:GABAergic nervous system,inflammatory response,oxidative stress,neurotrophic factors,and neurotransmitters in the brain.Its clinical application value was further explored to provide a theoretical basis for the development and utilization of icariin II in treating depression.展开更多
Icariin,a major prenylated flavonoid found in Epimedium spp.,is a bioactive constituent of Herba Epimedii and has been shown to exert neuroprotective effects in experimental models of Alzheimer’s disease.In this stud...Icariin,a major prenylated flavonoid found in Epimedium spp.,is a bioactive constituent of Herba Epimedii and has been shown to exert neuroprotective effects in experimental models of Alzheimer’s disease.In this study,we investigated the neuroprotective mechanism of icariin in an APP/PS1/Tau triple-transgenic mouse model of Alzheimer’s disease.We performed behavioral tests,pathological examination,and western blot assay,and found that memory deficits of the model mice were obviously improved,neuronal and synaptic damage in the cerebral cortex was substantially mitigated,and amyloid-βaccumulation and tau hyperphosphorylation were considerably reduced after 5 months of intragastric administration of icariin at a dose of 60 mg/kg body weight per day.Furthermore,deficits of proteins in the insulin signaling pathway and their phosphorylation levels were significantly reversed,including the insulin receptor,insulin receptor substrate 1,phosphatidylinositol-3-kinase,protein kinase B,and glycogen synthase kinase 3β,and the levels of glucose transporter 1 and 3 were markedly increased.These findings suggest that icariin can improve learning and memory impairments in the mouse model of Alzheimer’s disease by regulating brain insulin signaling and glucose transporters,which lays the foundation for potential clinical application of icariin in the prevention and treatment of Alzheimer’s disease.展开更多
Mesenchymal stem cells(MSC)are particularly effective in promoting cartilage regeneration due to their immunomodulatory,anti-inflammatory and regenerative repair functions of tissues and organs.Meanwhile,the intra-art...Mesenchymal stem cells(MSC)are particularly effective in promoting cartilage regeneration due to their immunomodulatory,anti-inflammatory and regenerative repair functions of tissues and organs.Meanwhile,the intra-articular delivery and synergy with other therapeutic drugs have been the key issues driving their further application.We report a mussel-inspired multifunctional hydrogel system,which could achieve co-delivery and synergism effect of MSC-derived exosomes(Exos)with icariin(ICA).The ICA and Exos co-delivered articular cavity injection system are expected to retain in the joint cavity and promote cartilage regeneration,due to the thermosensitive,self-healing and adhesion properties of the mussel-inspired multifunctional hydrogel.The experimental results proved that Exos enhanced the cellular uptake of ICA by more than 2-fold evenly,and the synergism of Exos and ICA efficiently improve the cell proliferation and migration.After synergic treatment,the content of matrix metalloproteinase 13 in the supernatant and intracellular decreased by 47%and 59%,respectively.In vivo study,ICA-loaded Exos exhibited prolonged retention behavior bymultifunctional hydrogel delivery,thus displayed an increased cartilage protection.In the model of osteoarthritis,co-delivery hydrogel system relieved the cartilage recession,ensuring appropriate cartilage thickness.展开更多
BACKGROUND Dysregulated microRNA(miRNA)is crucial in the progression of diabetic nephropathy(DN).AIM To investigate the potential molecular mechanism of Icariin(ICA)in regulating endoplasmic reticulum(ER)stress-mediat...BACKGROUND Dysregulated microRNA(miRNA)is crucial in the progression of diabetic nephropathy(DN).AIM To investigate the potential molecular mechanism of Icariin(ICA)in regulating endoplasmic reticulum(ER)stress-mediated apoptosis in high glucose(HG)-induced primary rat kidney cells(PRKs),with emphasis on the role of miR-503 and sirtuin 4(SIRT4)in this process.METHODS Single intraperitoneal injection of streptozotocin(65 mg/kg)in Sprague-Dawley rats induce DN in the in vivo hyperglycemic model.Glucose-treated PRKs were used as an in vitro HG model.An immunofluorescence assay identified isolated PRKs.Cell Counting Kit-8 and flow cytometry analyzed the effect of ICA treatment on cell viability and apoptosis,respectively.Real-time quantitative polymerase chain reaction and western blot analyzed the levels of ER stressrelated proteins.Dual luciferase analysis of miR-503 binding to downstream SIRT4 was performed.RESULTS ICA treatment alleviated the upregulated miR-503 expression in vivo(DN)and in vitro(HG).Mechanistically,ICA reduced HG-induced miR-503 overexpression,thereby counteracting its function in downregulating SIRT4 levels.ICA regulated the miR-503/SIRT4 axis and subsequent ER stress to alleviate HG-induced PRKs injury.CONCLUSION ICA reduced HG-mediated inhibition of cell viability,promotion of apoptosis,and ER stress in PRKs.These effects involved regulation of the miR-503/SIRT4 axis.These findings indicate the potential of ICA to treat DN,and implicate miR-503 as a viable target for therapeutic interventions in DN.展开更多
OBJECTIVE To investigate the regulatory effects of icariin(ICA)on cardiac micro⁃vascular endothelial cells(CMEC)after oxygenglucose deprivation reperfusion(OGD/R)injury.METHODS CMEC were subjected to OGD/R treatment t...OBJECTIVE To investigate the regulatory effects of icariin(ICA)on cardiac micro⁃vascular endothelial cells(CMEC)after oxygenglucose deprivation reperfusion(OGD/R)injury.METHODS CMEC were subjected to OGD/R treatment to construct a myocardial ischemiareperfusion model,and were divided into normal,model,low(10μmol·L^(-1)),medium(20μmol·L^(-1))and high(40μmol·L^(-1))ICA group,and high ICA+inhibitor group(40μmol·L^(-1)+20 nmol·L^(-1)).CCK-8 assay was used to assess the protective ability of ICA against CMEC,and cell migration assay and tube-formation assay were used to detect the migration and generation ability of CMEC.The TCMSP database,Swiss-Target database and literature mining methods were used to col⁃lect ICA-related targets,the GeneCards data⁃base was used to collect target genes related to myocardial ischemia/reperfusion,and Cytoscape 3.8.0 software was used to construct a"drug-tar⁃get-disease"network.The potential targets were imported into STRING 11.5 database to obtain the PPI network.GO and KEGG enrichment analyses were performed on the potential targets using the DAVID database.Molecular docking was performed using AutoDock-vina 1.1.2 soft⁃ware.Western blot detected the expression of related proteins.RESULTS After CMEC was subjected to OGD/R treatment,ICA had a protec⁃tive effect at 10^(-1)60μmol·L^(-1);the results of the cell migration assay showed that each group of ICA could promote the migratory effect of CMEC(P<0.01,P<0.01);and the results of tube-for⁃mation assay showed that each group of ICA could significantly promote the generation of branches(P<0.01)and the capillary length exten⁃sion(P<0.05).Network pharmacology collected a total of 23 ICA action targets,1500 disease tar⁃gets and 12 key targets.GO function enrichment analysis found 85 results.KEGG pathway enrich⁃ment analysis found 53 results,involving AGERAGE signaling pathway,sphingolipid signaling pathway and VEGF signaling pathway.Molecu⁃lar docking results showed that ICA had better binding with core targets PRKCB,PRKCA and PTGS2.Western blot results showed that ICA could regulate the expression of PRKCB,PRKCA and PTGS2 proteins.The results of cell migra⁃tion assay,tube-formation assay and protein expression were reversed after addition of PKC inhibitor.CONCLUSION The potential mecha⁃nism of action of ICA against myocardial isch⁃emia-reperfusion injury may be related to the reg⁃ulation of processes such as CMEC migration and angiogenesis,and it functions through the key target gene PKC.展开更多
基金Supported by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation,No.GZC20231088President Foundation of The Third Affiliated Hospital of Southern Medical University,China,No.YP202210.
文摘BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs.
基金supported by Natural Science Foundation of Hunan Province(No.2023JJ40511)Excellent Youth Project of Scientific Research Program of Hunan Education Department(No.22B0370)+2 种基金Project of Traditional Chinese Medicine Administration of Hunan Province(No.B2023034)Science and Technology Development Foundation of Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University(No.LYYB202214)Hunan Provincial Hygiene and Health Commission Health Research Project(No.W20243165).
文摘Objective:To examine the effect of icariin plus curcumol on prostate cancer cells PC3 and elucidate the underlying mechanisms.Methods:We employed the Cell Counting Kit 8 assay and colony formation assay to assess cell viability and proliferation.Autophagy expression was analyzed using monodansylcadaverine staining.Immunofluorescence and Western blot analyses were used to evaluate protein expressions related to autophagy,pyroptosis,and the mTOR pathway.Cellular damage was examined using the lactate dehydrogenase assay.Moreover,cathepsin B and NLRP3 were detected by co-immunoprecipitation.Results:Icariin plus curcumol led to a decrease in PC3 cell proliferation and an enhancement of autophagy.The levels of LC3-Ⅱ/LC3-Ⅰand beclin-1 were increased,while the levels of p62 and mTOR were decreased after treatment with icariin plus curcumol.These changes were reversed upon overexpression of mTOR.Furthermore,3-methyladenine resulted in a decrease in inflammatory cytokines,pyroptosis-related protein levels,and lactate dehydrogenase concentration,compared to the icariin plus curcumol group.Inhibiting cathepsin B reversed the regulatory effects of icariin plus curcumol.Conclusions:Icariin plus curcumol demonstrates great potential as a therapeutic agent for castration-resistant prostate cancer by enhancing autophagy via the mTOR pathway and promoting pyroptosis mediated by cathepsin B.These findings provide valuable insights into the molecular mechanisms underlying the therapeutic potential of icariin and curcumol for prostate cancer treatment.
基金supported by Affiliated Hospital of Youjiang Medical University for Nationalities(No.Y20212615).
文摘Objective:To explore the mechanism by which icariin alleviates viral myocarditis.Methods:CVB3-induced cardiomyocytes were used as an in vitro model of viral myocarditis to assess the effects of icariin treatment on cell viability,inflammation,and apoptosis.Moreover,the effects of icariin on ferroptosis and TLR4 signaling were assessed.After AC16 cells were transfected with TLR4 overexpression plasmids,the role of TLR4 in mediating the regulatory effect of icariin in viral myocarditis was investigated.Results:Icariin significantly elevated cell viability and reduced inflammatory factors TNF-α,IL-1β,IL-6,and IL-18.Flow cytometry revealed that icariin decreased apoptosis rate,and the protein expression of Bax and cleaved caspase 3 and 9 in CVB3-induced cardiomyocytes.Additionally,it suppressed ferroptosis including lipid peroxidation and ferrous ion,as well as the TLR4 signaling.However,TLR4 overexpression abrogated the modulatory effects of icariin.Conclusions:Icariin mitigates CVB3-induced myocardial injury by inhibiting TLR4-mediated ferroptosis.Further animal study is needed to verify its efficacy.
基金supported by the Natural Science Foundation of Yichang City of China(No.A23-1-075).
文摘Objective Icariin(ICA)has a good neuroprotective effect and can upregulate neuronal basal autophagy in naturally aging rats.Mitochondrial dysfunction is associated with brain aging-related neurodegenerative diseases.Abnormal opening of the mitochondrial permeability transition pore(mPTP)is a crucial factor in mitochondrial dysfunction and is associated with excessive autophagy.This study aimed to explore that ICA protects against neuronal injury by blocking the mPTP opening and down-regulating autophagy levels in a D-galactose(D-gal)-induced cell injury model.Methods A cell model of neuronal injury was established in rat pheochromocytoma cells(PC12 cells)treated with 200 mmol/L D-gal for 48 h.In this cell model,PC12 cells were pre-treated with different concentrations of ICA for 24 h.MTT was used to detect cell viability.Senescence associatedβ-galactosidase(SA-β-Gal)staining was used to observe cell senescence.Western blot analysis was performed to detect the expression levels of a senescence-related protein(p21),autophagy markers(LC3B,p62,Atg7,Atg5 and Beclin 1),mitochondrial fission and fusion-related proteins(Drp1,Mfn2 and Opa1),and mitophagy markers(Pink1 and Parkin).The changes of autophagic flow were detected by using mRFP-GFP-LC3 adenovirus.The intracellular ultrastructure was observed by transmission electron microscopy.Immunofluorescence was used to detect mPTP,mitochondrial membrane potential(MMP),mitochondrial reactive oxygen species(mtROS)and ROS levels.ROS and apoptosis levels were detected by flow cytometry.Results D-gal treatment significantly decreased the viability of PC12 cells,and markedly increased the SA-β-Gal positive cells as compared to the control group.With the D-gal stimulation,the expression of p21 was significantly up-regulated.Furthermore,D-gal stimulation resulted in an elevated LC3B II/I ratio and decreased p62 expression.Meanwhile,autophagosomes and autolysosomes were significantly increased,indicating abnormal activation of autophagy levels.In addition,in this D-gal-induced model of cell injury,the mPTP was abnormally open,the ROS generation was continuously increased,the MMP was gradually decreased,and the apoptosis was increased.ICA effectively improved mitochondrial dysfunction to protect against D-gal-induced cell injury and apoptosis.It strongly inhibited excessive autophagy by blocking the opening of the mPTP.Cotreatment with ICA and an mPTP inhibitor(cyclosporin A)did not ameliorate mitochondrial dysfunction.However,the protective effects were attenuated by cotreatment with ICA and an mPTP activator(lonidamine).Conclusion ICA inhibits the activation of excessive autophagy and thus improves mitochondrial dysfunction by blocking the mPTP opening.
基金supported by the Natural Science Foundation of Sichuan Province(2023NSFSC1799)the Science and Technology Development Fund of the Affiliated Hospital of Chengdu University of Traditional Chinese Medicine(21ZS05,23YY07).
文摘Icariin is the most prevalent component of the medicinal herb Herba Epimedii.Icariin exhibits many medicinal properties,including anti-cancer impact and osteoprotective and neuroprotective effects.The goal of this study was to use bibliometric analysis to find and describe the top 100 papers about Icariin that had received the most citations.The Science Citation Index-Expanded(SCI-E)of the Web of Science Core Collection was used to find publications on Icariin(WoSCC).Descriptive analysis was conducted using VOSviewer software.There were 1473 articles about Icariin in all.The top 100 papers were published between 1996 and 2024 and received citations in the range of 55 to 390.The country that has contributed the most to Icariin research is China(84).The most productive institution was Fudan University.The most published journal was Phytomedicine.The research hotspots of Icariin mainly focus on the following aspects:research on Icariin treatment of sex hormone-related osteoporosis and erectile function;The effect of Icariin on cells by regulating oxidative stress,apoptosis,and proliferation;the mechanism of Icariin in the treatment of cancer;the neuroprotective effect of Icariin in central nervous diseases,such as Alzheimer's disease,Parkinson's disease,and depression.Future research should focus on further elucidating Icariin's anti-tumor effects,its application in cartilage tissue engineering and orthopedic biomaterials,and developing novel drug delivery systems to enhance its bioavailability.This research contributed essential knowledge to the study of Icariin.These results may be used in new study areas and to direct drug development.
文摘This article summarized the research progress on the antidepressant mechanism of icariin II,mainly elaborating on its mechanism from five aspects:GABAergic nervous system,inflammatory response,oxidative stress,neurotrophic factors,and neurotransmitters in the brain.Its clinical application value was further explored to provide a theoretical basis for the development and utilization of icariin II in treating depression.
基金supported by the National Natural Science Foundation of China, Nos. 82060727 (to FJ), 81660599 (to FJ)the National Innovation Training Project for College Students, No. 201910661009 (to FJ)the Science and Technology Cooperation Project of Zunyi Science and Technology Bureau and Zunyi Medical University, No. (2019) 47 (to XLF)
文摘Icariin,a major prenylated flavonoid found in Epimedium spp.,is a bioactive constituent of Herba Epimedii and has been shown to exert neuroprotective effects in experimental models of Alzheimer’s disease.In this study,we investigated the neuroprotective mechanism of icariin in an APP/PS1/Tau triple-transgenic mouse model of Alzheimer’s disease.We performed behavioral tests,pathological examination,and western blot assay,and found that memory deficits of the model mice were obviously improved,neuronal and synaptic damage in the cerebral cortex was substantially mitigated,and amyloid-βaccumulation and tau hyperphosphorylation were considerably reduced after 5 months of intragastric administration of icariin at a dose of 60 mg/kg body weight per day.Furthermore,deficits of proteins in the insulin signaling pathway and their phosphorylation levels were significantly reversed,including the insulin receptor,insulin receptor substrate 1,phosphatidylinositol-3-kinase,protein kinase B,and glycogen synthase kinase 3β,and the levels of glucose transporter 1 and 3 were markedly increased.These findings suggest that icariin can improve learning and memory impairments in the mouse model of Alzheimer’s disease by regulating brain insulin signaling and glucose transporters,which lays the foundation for potential clinical application of icariin in the prevention and treatment of Alzheimer’s disease.
文摘Mesenchymal stem cells(MSC)are particularly effective in promoting cartilage regeneration due to their immunomodulatory,anti-inflammatory and regenerative repair functions of tissues and organs.Meanwhile,the intra-articular delivery and synergy with other therapeutic drugs have been the key issues driving their further application.We report a mussel-inspired multifunctional hydrogel system,which could achieve co-delivery and synergism effect of MSC-derived exosomes(Exos)with icariin(ICA).The ICA and Exos co-delivered articular cavity injection system are expected to retain in the joint cavity and promote cartilage regeneration,due to the thermosensitive,self-healing and adhesion properties of the mussel-inspired multifunctional hydrogel.The experimental results proved that Exos enhanced the cellular uptake of ICA by more than 2-fold evenly,and the synergism of Exos and ICA efficiently improve the cell proliferation and migration.After synergic treatment,the content of matrix metalloproteinase 13 in the supernatant and intracellular decreased by 47%and 59%,respectively.In vivo study,ICA-loaded Exos exhibited prolonged retention behavior bymultifunctional hydrogel delivery,thus displayed an increased cartilage protection.In the model of osteoarthritis,co-delivery hydrogel system relieved the cartilage recession,ensuring appropriate cartilage thickness.
基金The First Affiliated Hospital of Guangzhou University of Chinese Medicine Innovation and Strengthening Fund,No.2019QN14.
文摘BACKGROUND Dysregulated microRNA(miRNA)is crucial in the progression of diabetic nephropathy(DN).AIM To investigate the potential molecular mechanism of Icariin(ICA)in regulating endoplasmic reticulum(ER)stress-mediated apoptosis in high glucose(HG)-induced primary rat kidney cells(PRKs),with emphasis on the role of miR-503 and sirtuin 4(SIRT4)in this process.METHODS Single intraperitoneal injection of streptozotocin(65 mg/kg)in Sprague-Dawley rats induce DN in the in vivo hyperglycemic model.Glucose-treated PRKs were used as an in vitro HG model.An immunofluorescence assay identified isolated PRKs.Cell Counting Kit-8 and flow cytometry analyzed the effect of ICA treatment on cell viability and apoptosis,respectively.Real-time quantitative polymerase chain reaction and western blot analyzed the levels of ER stressrelated proteins.Dual luciferase analysis of miR-503 binding to downstream SIRT4 was performed.RESULTS ICA treatment alleviated the upregulated miR-503 expression in vivo(DN)and in vitro(HG).Mechanistically,ICA reduced HG-induced miR-503 overexpression,thereby counteracting its function in downregulating SIRT4 levels.ICA regulated the miR-503/SIRT4 axis and subsequent ER stress to alleviate HG-induced PRKs injury.CONCLUSION ICA reduced HG-mediated inhibition of cell viability,promotion of apoptosis,and ER stress in PRKs.These effects involved regulation of the miR-503/SIRT4 axis.These findings indicate the potential of ICA to treat DN,and implicate miR-503 as a viable target for therapeutic interventions in DN.
基金National Natural Science Foundation of China(82030124)National Natural Science Foundation of China(82174015)Science and Technology Innovation Project of China Academy of Traditional Chinese Medicine(CI2021A04609)。
文摘OBJECTIVE To investigate the regulatory effects of icariin(ICA)on cardiac micro⁃vascular endothelial cells(CMEC)after oxygenglucose deprivation reperfusion(OGD/R)injury.METHODS CMEC were subjected to OGD/R treatment to construct a myocardial ischemiareperfusion model,and were divided into normal,model,low(10μmol·L^(-1)),medium(20μmol·L^(-1))and high(40μmol·L^(-1))ICA group,and high ICA+inhibitor group(40μmol·L^(-1)+20 nmol·L^(-1)).CCK-8 assay was used to assess the protective ability of ICA against CMEC,and cell migration assay and tube-formation assay were used to detect the migration and generation ability of CMEC.The TCMSP database,Swiss-Target database and literature mining methods were used to col⁃lect ICA-related targets,the GeneCards data⁃base was used to collect target genes related to myocardial ischemia/reperfusion,and Cytoscape 3.8.0 software was used to construct a"drug-tar⁃get-disease"network.The potential targets were imported into STRING 11.5 database to obtain the PPI network.GO and KEGG enrichment analyses were performed on the potential targets using the DAVID database.Molecular docking was performed using AutoDock-vina 1.1.2 soft⁃ware.Western blot detected the expression of related proteins.RESULTS After CMEC was subjected to OGD/R treatment,ICA had a protec⁃tive effect at 10^(-1)60μmol·L^(-1);the results of the cell migration assay showed that each group of ICA could promote the migratory effect of CMEC(P<0.01,P<0.01);and the results of tube-for⁃mation assay showed that each group of ICA could significantly promote the generation of branches(P<0.01)and the capillary length exten⁃sion(P<0.05).Network pharmacology collected a total of 23 ICA action targets,1500 disease tar⁃gets and 12 key targets.GO function enrichment analysis found 85 results.KEGG pathway enrich⁃ment analysis found 53 results,involving AGERAGE signaling pathway,sphingolipid signaling pathway and VEGF signaling pathway.Molecu⁃lar docking results showed that ICA had better binding with core targets PRKCB,PRKCA and PTGS2.Western blot results showed that ICA could regulate the expression of PRKCB,PRKCA and PTGS2 proteins.The results of cell migra⁃tion assay,tube-formation assay and protein expression were reversed after addition of PKC inhibitor.CONCLUSION The potential mecha⁃nism of action of ICA against myocardial isch⁃emia-reperfusion injury may be related to the reg⁃ulation of processes such as CMEC migration and angiogenesis,and it functions through the key target gene PKC.