期刊文献+
共找到125,268篇文章
< 1 2 250 >
每页显示 20 50 100
Strategic equilibrium price analysis and numerical simulation of preponderant high-tech metal mineral resources 被引量:3
1
作者 钟美瑞 谌杰宇 +1 位作者 朱学红 黄健柏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期3153-3160,共8页
Based on exploitation compensation value system of preponderant high-tech metal mineral resources and distortion of pricing mechanism, social utility function was constructed to modify decision utility function of dev... Based on exploitation compensation value system of preponderant high-tech metal mineral resources and distortion of pricing mechanism, social utility function was constructed to modify decision utility function of developers, and was extended to Stackelberg production decision model of preponderant high-tech metal mineral resources development. Analyzing the influences on market monopoly, output and price decision-making exerted by altruistic preferences, inequity aversion and sequential reciprocity fairness belief equilibrium, game fairness equilibrium which is significant in experimental economics can be obtained and verified by numerical simulation. In process of strategic pricing, method that uses the variation of producer surplus to measure strategic value from psychological preferences was proposed for the first time and technical support to improve exploitation compensation value system of preponderant metal mineral resources was available. 展开更多
关键词 METAL high-tech mineral mineral resources equilibrium price numerical simulation
下载PDF
Parallel numerical simulations for quantized vortices in Bose-Einstein condensates
2
作者 黄朝晖 王德生 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第1期32-37,共6页
We employ the parallel computing technology to study numerically the three-dimensional structure of quantized vortices of Bose-Einstein condensates, For anisotropic cases, the bending process of vortices is described ... We employ the parallel computing technology to study numerically the three-dimensional structure of quantized vortices of Bose-Einstein condensates, For anisotropic cases, the bending process of vortices is described in detail by the decrease of Gross-Pitaevskii energy. A completely straight vortex and the steady and symmetrical multiple-vortex configurations are obtained. We analyse the effect of initial conditions and angular velocity on the number and shape of vortices. 展开更多
关键词 3D numerical simulations quantized vortices Bose-Einstein condensates parallel computing
下载PDF
A traffic flow lattice model considering relative current influence and its numerical simulation 被引量:1
3
作者 孙棣华 田川 刘卫宁 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期241-246,共6页
Based on Xue's lattice model, an extended lattice model is proposed by considering the relative current information about next-nearest-neighbour sites ahead. The linear stability condition of the presented model is o... Based on Xue's lattice model, an extended lattice model is proposed by considering the relative current information about next-nearest-neighbour sites ahead. The linear stability condition of the presented model is obtained by employing the linear stability theory. The density wave is investigated analytically with the perturbation method. The results show that the occurrence of traffic jamming transitions can be described by the kink-antikink solution of the modified Korteweg-de Vries (mKdV) equation. The simulation results are in good agreement with the analytical results, showing that the stability of traffic flow can be enhanced when the relative current of next-nearest-neighbour sites ahead is considered. 展开更多
关键词 traffic flow relative current lattice model numerical simulation
下载PDF
Idealized numerical simulation experiment of ice seeding in convective clouds using a bin microphysics scheme 被引量:1
4
作者 Jiefan Yang Hengchi Lei 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第6期35-41,共7页
A 2D axisymmetric bin model is used to conduct idealized numerical experiments of cloud seeding.The simulations are performed for two clouds that differ in their initial wind shear.Results show that,although cloud see... A 2D axisymmetric bin model is used to conduct idealized numerical experiments of cloud seeding.The simulations are performed for two clouds that differ in their initial wind shear.Results show that,although cloud seeding with an ice concentration of 1000 Lin a regime that has relatively high supercooled liquid water can obtain a positive effect,the rainfall enhancement seems more pronounced when the cloud develops in a wind shear environment.In no-shear environment,the change in the microphysical thermodynamic field after seeding shows that,although more graupel is produced via riming and this can increase the surface rainfall intensity,the larger drag force and cooling of melting graupel is unfavorable for the development of cloud.On the contrary,when the cloud develops in a wind shear environment,since the main downdraft is behind the direction of movement of the cloud,its negative effect on precipitation is much weaker. 展开更多
关键词 Cloud seeding Bin model Idealized numerical simulation
下载PDF
SIMPLIFIED SCALING TRANSFORMATION FOR THE NUMERICAL SIMULATION OF MEMS DEVICES WITH THIN FILM STRUCTURES 被引量:1
5
作者 WANG Wei LI Zhihong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期59-61,共3页
Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its p... Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its planar dimensions makes it difficult to study the thin film performance numerically. In this work, a scaling transformation was presented to make the different dimensional sizes equivalent, and thereby, to improve the grid quality considerably. Two numerical experiments were studied to validate the present scaling transformation method. The numerical results indicated that the largest grid size difference can be decreased to one to two orders of magnitude by using the present scaling transformation, and the memory required by the numerical simulation, i.e., the total grid number, could be reduced by about two to three orders of magnitude, while the numerical accuracies with and without this scaling transformation were nearly the same. 展开更多
关键词 Scaling transformations numerical simulation Microelectromechanical systems (MEMS) Thin film
下载PDF
Nonlinear numerical simulation method for galloping of iced conductor
6
作者 刘小会 严波 +1 位作者 张宏雁 周松 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第4期489-501,共13页
Based on the principle of virtual work, an updated Lagrangian finite element formulation for the geometrical large deformation analysis of galloping of the iced conductor in an overhead transmission line is developed.... Based on the principle of virtual work, an updated Lagrangian finite element formulation for the geometrical large deformation analysis of galloping of the iced conductor in an overhead transmission line is developed. In numerical simulation, a three-node isoparametric cable element with three translational and one torsional degrees-of-freedom at each node is used to discretize the transmission line. The nonlinear dynamic system equation is solved with the Newmark time integration method and the Newton-Raphson nonlinear iteration. Numerical examples demonstrate the efficiency of the presented method and the developed finite element program. A new possible galloping mode, which may reflect the saturation phenomenon of a nonlinear dynamic system, is discovered under the condition that the lowest order of vertical natural frequency of the transmission line is approximately two times of the horizontal one. 展开更多
关键词 iced conductor GALLOPING geometric nonlinearity numerical method
下载PDF
Periodic Lattice Porous Structure Produced by Selective Laser Melting:Process,Experiment and Numerical Simulation Analysis
7
作者 Jianrui Zhang Min Chi +1 位作者 Bo Qian Zhijun Qiu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期77-94,共18页
To accurately perform the coupled simulation of temperature field and stress field of complex parts and porous structures under the optimal manufacturing process parameters,three kinds of porous structures with differ... To accurately perform the coupled simulation of temperature field and stress field of complex parts and porous structures under the optimal manufacturing process parameters,three kinds of porous structures with different complexity were designed in this paper.Firstly,ANSYS additive software was used to conduct the stress/deformation simulation of the whole structure under different scanning strategies.Secondly,the optimal scanning strategy for different porous structures was determined,then the experimental preparation was performed,and mechanical properties of compression were tested and studied.The results show that the elastic modulus and yield strength increase with the increase of pole diameter/wall thickness.In addition,the quasi-static compression simulation of different structures was performed,and the compression performance was analyzed based on the experimental data.Finally,the stress concentration region of different structures was obtained. 展开更多
关键词 Selective laser melting numerical simulation stress field lattice porous structure
下载PDF
Optimization of flow control devices for a T-type five-strand billet caster tundish: water modeling and numerical simulation 被引量:11
8
作者 Fei He Ling-ying Zhang Qi-Yan Xu 《China Foundry》 SCIE 2016年第3期166-175,共10页
The optimization of flow control devices(FCDs) for a T-type five-strand billet caster tundish was carried out by water modeling and numerical simulation. In water modeling experiments, flow characteristics of the bare... The optimization of flow control devices(FCDs) for a T-type five-strand billet caster tundish was carried out by water modeling and numerical simulation. In water modeling experiments, flow characteristics of the bare tundish and tundish conf igurations with designed U-type baff les and a round turbulence inhibitor were analyzed using residence time distribution(RTD) curves. Mathematical models for liquid steel in the real plant tundish were established using the fluid dynamics software package Fluent. The flow field, the temperature field, and the RTD curves of liquid steel in the proposed tundish conf igurations were obtained. The results of numerical simulation and water modeling were validated with each other by the predicted and experimental RTD curves. The results of flow field and temperature field were used to ref lect the actual state of a real plant tundish and to choose the optimal FCD. Finaly, from the whole performance of the multi-strand tundish, the optimal scheme was determined by combining the results of water modeling and numerical simulation. With the optimal tundish equipped with U-type baffle with def lector holes and round turbulence inhibitor, not only was the flow characteristic of each strand improved, but also the difference of flow characteristics between multiple strands was smaller. 展开更多
关键词 TUNDISH water modeling numerical simulation RTD BAFFLE turbulence inhibitor
下载PDF
Relative Impacts of Sea Ice Loss and Atmospheric Internal Variability on the Winter Arctic to East Asian Surface Air Temperature Based on Large-Ensemble Simulations with NorESM2 被引量:1
9
作者 Shengping HE Helge DRANGE +4 位作者 Tore FUREVIK Huijun WANG Ke FAN Lise Seland GRAFF Yvan J.ORSOLINI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1511-1526,共16页
To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simu... To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling. 展开更多
关键词 Arctic sea ice loss warm Arctic–cold East Asia atmospheric internal variability large-ensemble simulation NorESM2 PAMIP
下载PDF
Integrated numerical simulation of hydraulic fracturing and production in shale gas well considering gas-water two-phase flow
10
作者 TANG Huiying LUO Shangui +4 位作者 LIANG Haipeng ZENG Bo ZHANG Liehui ZHAO Yulong SONG Yi 《Petroleum Exploration and Development》 SCIE 2024年第3期684-696,共13页
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale... Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model. 展开更多
关键词 shale gas well hydraulic fracturing fracture propagation gas-water two-phase flow fracturing-production integrated numerical simulation
下载PDF
Numerical Analyses of Ice Jamming in Jacket Platform Conductor Array in Bohai Sea
11
作者 ZHAI Bi-yao YANG Fan +1 位作者 PAN Jun-ning XIE Dong-mei 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期885-896,共12页
Serious ice accumulating,pile-up and ice jamming occur around the conductor array of offshore jacket platforms during the winter every year in Bohai Sea,which could cause grave threats to the stability of platform str... Serious ice accumulating,pile-up and ice jamming occur around the conductor array of offshore jacket platforms during the winter every year in Bohai Sea,which could cause grave threats to the stability of platform structure,the safety of people and equipment,and even severer calamity.Therefore,the process of ice accumulation and ice jamming in the jacket platform area needs more concern.This study focuses on ice accumulation and jamming behaviors in the jacket platform conductor area by using a coupled two-dimensional hydro-ice dynamics model.A series of cases are conducted with different flow conditions,such as flow velocity,drifting direction and oscillatory flow.Through the simulation,the ice pile-up process is described and changes in ice-jamming thickness,ice pile-up location and ice pile-up volume are investigated.The differences in ice pile-up in the steady flow and oscillatory flow are analyzed.This study proposes a new approach to simulate the ice jamming process in the jacket platform conductor area,providing a reference for ice management on the platform. 展开更多
关键词 sea ice ice jamming conductor array numerical modeling hydro-ice dynamics
下载PDF
Multi-physical fields distribution in billet during helical electromagnetic stirring:A numerical simulation research
12
作者 Dong Pan Qing-tao Guo +3 位作者 Kai-lun Zhang Fu-zhi Yu Yu-ying Li Yu-bao Xiao 《China Foundry》 SCIE EI CAS CSCD 2024年第1期51-59,共9页
Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimens... Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimensional flow of molten metal and eliminating solidification defects.In this study,the single-winding helical stirring(SWHS)was introduced,offering advantages such as smaller volume and lower electromagnetic shielding compared to traditional helical stirring methods.Following a comprehensive numerical simulation,the stirring parameters of SWHS were adjusted to yoke inclination angle of 43°and frequency of 12 Hz.The higher electromagnetic force and flow velocity in drawing direction,as well as the lower temperature gradient induced by the SWHS,are positive factors for homogeneous solidification of billet.The experimental results on Al-8%Si alloy and 0.4%C-1.1%Mn steel demonstrate that compared to rotate stirring,the SWHS process can induce better billet quality and is more effective in accelerating the equiaxed expansion and reducing element segregation.The SWHS process can enhance the equiaxed ratio of the billet by 58.3%and reduce segregation degree of carbon element by 10.97%.Consequently,SWHS holds great promise as a potential approach for improving the quality of continuous casting billets. 展开更多
关键词 BILLET electromagnetic stirring HELICAL SOLIDIFICATION element segregation numerical simulation
下载PDF
In-situ measurement via the flow-through method and numerical simulations for radon exhalation during measurements of the radon exhalation rate
13
作者 Ming Xia Yong-Jun Ye +2 位作者 Shan-Wei Shang Ting Yu Dai-Jia Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第7期192-207,共16页
Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods... Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods.An abnormal radon exhalation behavior was observed,leading to computational fluid dynamics(CFD)-based simulations in which dynamic radon migration in a porous medium and accumulation chamber was considered.Based on the in-situ experimental and numerical simulation results,variations in the radon exhalation rate subject to permeability,flow rate,and insertion depth were quantified and analyzed.The in-situ radon exhalation rates measured using the flow-through method were higher than those measured using the closed-loop method,which could be explained by the negative pressure difference between the inside and outside of the chamber during the measurements.The consistency of the variations in the radon exhalation rate between the experiments and simulations suggests the reliability of CFD-based techniques in obtaining the dynamic evolution of transient radon exhalation rates for diffusion and convection at the porous medium-air interface.The synergistic effects of the three factors(insertion depth,flow rate,and permeability)on the negative pressure difference and measured exhalation rate were quantified,and multivariate regression models were established,with positive correlations in most cases;the exhalation rate decreased with increasing insertion depth at a permeability of 1×10^(−11) m^(2).CFD-based simulations can provide theoretical guidance for improving the flow-through method and thus achieve accurate measurements. 展开更多
关键词 Radon exhalation FLOW-THROUGH numerical simulation Accumulation chamber Multivariate regression
下载PDF
Determination method of mesh size for numerical simulation of blast load in near-ground detonation
14
作者 Doudou Si Zuanfeng Pan Haipeng Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期111-125,共15页
In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommend... In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommended to determine the blast load on the structures via numerical simulation. Since the mesh size of the numerical model highly depends on the explosion scenario, there is no generally applicable approach for the mesh size selection. An efficient method to determine the mesh size of the numerical model of near-ground detonation based on explosion scenarios is proposed in this study. The effect of mesh size on the propagation of blast wave under different explosive weights was studied, and the correlations between the mesh size effect and the charge weight or the scaled distance was described. Based on the principle of the finite element method and Hopkinson-Cranz scaling law, a mesh size measurement unit related to the explosive weight was proposed as the criterion for determining the mesh size in the numerical simulation. Finally, the applicability of the method proposed in this paper was verified by comparing the results from numerical simulation and the explosion tests and was verified in AUTODYN. 展开更多
关键词 Blast load Mesh size effect numerical simulation Scaled mesh size VERIFICATION
下载PDF
Coupled CFD-DEM Numerical Simulation of the Interaction of a Flow-Transported Rag with a Solid Cylinder
15
作者 Yun Ren Lianzheng Zhao +2 位作者 Xiaofan Mo Shuihua Zheng Youdong Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1593-1609,共17页
A coupled Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)approach is used to calculate the interaction of a flexible rag transported by a fluid current with a fixed solid cylinder.More specifically a hyb... A coupled Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)approach is used to calculate the interaction of a flexible rag transported by a fluid current with a fixed solid cylinder.More specifically a hybrid Eulerian-Lagrangian approach is used with the rag being modeled as a set of interconnected particles.The influence of various parameters is considered,namely the inlet velocity(1.5,2.0,and 2.5 m/s,respectively),the angle formed by the initially straight rag with the flow direction(45°,60°and 90°,respectively),and the inlet position(90,100,and 110 mm,respectively).The results show that the flow rate has a significant impact on the permeability of the rag.The higher the flow rate,the higher the permeability and the rag speed difference.The angle has a minor effect on rag permeability,with 45°being the most favorable angle for permeability.The inlet position has a small impact on rag permeability,while reducing the initial distance between the rag an the cylinder makes it easier for rags to pass through. 展开更多
关键词 RAG flow around cylinder flow characteristics numerical simulation
下载PDF
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
16
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 Explosive load Explosion resistance performance Model test POLYUREA Concrete box girder numerical simulation
下载PDF
Experimental and Three-Dimensional Numerical Simulation of Phenomena Induced by Submerged Oblique Jet Scouring
17
作者 Hao Chen Xianbin Teng +2 位作者 Faxin Zhu Zhibin Zhang Jie Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1799-1821,共23页
Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium cond... Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°. 展开更多
关键词 Submerged jet jet angle experimental study numerical simulation bed shear stress
下载PDF
Investigations on High-Speed Flash Boiling Atomization of Fuel Based on Numerical Simulations
18
作者 Wei Zhong Zhenfang Xin +1 位作者 Lihua Wang Haiping Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1427-1453,共27页
Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pr... Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pressure.However,when the outlet speed of the nozzle exceeds 400 m/s,investigating high-speed flash boiling atomization(HFBA)becomes quite challenging.This difficulty arises fromthe involvement ofmany complex physical processes and the requirement for a very fine mesh in numerical simulations.In this study,an HFBA model for gasoline direct injection(GDI)is established.This model incorporates primary and secondary atomization,as well as vaporization and boilingmodels,to describe the development process of the flash boiling spray.Compared to lowspeed FBA,these physical processes significantly impact HFBA.In this model,the Eulerian description is utilized for modeling the gas,and the Lagrangian description is applied to model the droplets,which effectively captures the movement of the droplets and avoids excessive mesh in the Eulerian coordinates.Under various conditions,numerical solutions of the Sauter mean diameter(SMD)for GDI show good agreement with experimental data,validating the proposed model’s performance.Simulations based on this HFBA model investigate the influences of fuel injection temperature and ambient pressure on the atomization process.Numerical analyses of the velocity field,temperature field,vapor mass fraction distribution,particle size distribution,and spray penetration length under different superheat degrees reveal that high injection temperature or low ambient pressure significantly affects the formation of small and dispersed droplet distribution.This effect is conducive to the refinement of spray particles and enhances atomization. 展开更多
关键词 High-speed flash boiling atomization numerical simulations Eulerian description Lagrangian description gasoline direct injection
下载PDF
Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study
19
作者 ZHANG Kai ZHANG Hailong +4 位作者 TIAN Jianjin QU Jianjun ZHANG Xingxin WANG Zhenghui XIAO jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期113-130,共18页
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ... Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering. 展开更多
关键词 Folded linear HDPE sheet sand fence numerical simulation Flow field characteristics Protection benefits
下载PDF
Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump
20
作者 He Wang Ying He 《Fluid Dynamics & Materials Processing》 EI 2024年第4期889-899,共11页
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf... Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices. 展开更多
关键词 Magnetic fluid multi-physical field coupling induction pump numerical simulation liquid metal conveying
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部