To investigate the mechanical properties of ice-saturated frozen soil, a series of triaxial tests under various confining pressures(0.5 to 9.0 MPa) on ice-saturated frozen loess with ice content of 23.7% were carrie...To investigate the mechanical properties of ice-saturated frozen soil, a series of triaxial tests under various confining pressures(0.5 to 9.0 MPa) on ice-saturated frozen loess with ice content of 23.7% were carried out at a temperature-6 °C, and at 1.25 mm/min of loading rate. The triaxial tests include two loading modes, one with monotonic loading(i.e., triaxial compression), and another with static cycle loading. The test results under triaxial compression show that the strength and deformation behaviors of ice-saturated frozen loess are affected by confining pressure. According to the test results of triaxial loading-unloading cycle test, the elastic modulus evolution with the number of cycles under different confining pressures are analyzed.展开更多
In order to determine the changing rule of long-term frozen soil strength and elucidate the connection between long-term strength and soil physical properties,frozen loess was subjected to 4,6,8,10,and 50 freeze-thaw ...In order to determine the changing rule of long-term frozen soil strength and elucidate the connection between long-term strength and soil physical properties,frozen loess was subjected to 4,6,8,10,and 50 freeze-thaw cycles,under closed-state conditions in a constant-temperature box.The frozen samples were tested on a spherical template indenter,and the results show that under the effect of repeated freeze-thaw cycles,the long-term strength of frozen loess decreased; changes in the mechanical property indices were highly unstable during the first 10 cycles; the soil strength and density were the greatest at the eighth cycle while the void ratio was the smallest; and after eight cycles all of the indices had less fluctuation and certain rising or falling tendencies.By converting the number of freeze-thaw cycles into elapsed time in the tests,three different forecasting methods of long-term soil strength could be assessed and the soil equivalent cohesive force after 10 years,20 years,or 30 years could be estimated.展开更多
In seasonally frozen soil regions,freezing-thawing action and hydrothermal effect have strong influence on physical and mechanical behavior of shallow soil.A field experiment on the Loess Plateau in Northwest China wa...In seasonally frozen soil regions,freezing-thawing action and hydrothermal effect have strong influence on physical and mechanical behavior of shallow soil.A field experiment on the Loess Plateau in Northwest China was carried out to analyze the freezing-thawing process and hydrothermal characteristics of shallow soil considering the climate influence.The results show that the maximum seasonal freezing depth under bare ground surface in this area is from 20 cm to 50 cm.The ground temperature shows a similar changing trend with air temperature,but it has lagged behind the air temperature,and the ground temperature amplitude exponentially decreases with the increase of soil depth.The seasonally frozen soil has experienced four typical stages:unfrozen period,alternate freezing period,freezing period and alternate thawing period.The freezing-thawing process is characterized by unidirectional freezing and bidirectional thawing.The water content of shallow soil is significantly affected by air temperature,evaporation and precipitation,and the soil water content shows a"low-high-low"changing trend with the increase of depth.The soil temperature and water content interact with each other,and are often coupled.The variation trend of soil moisture with time is consistent with the change trend of the ground temperature with time in each soil layer,andthe degree of consistency is higher in the near surface soil than that in the lower layer.Also,the spatial-temporal characteristics of soil moisture and temperature is that the volumetric water content and ground temperatureof near surface soil have strong variability,and the range valueKa and coefficient of variation Cvof soil water content and ground temperaturein different seasons show a decreasing trend with the increase of depth.展开更多
Seasonal freeze–thaw processes have led to severe soil erosion in the middle and high latitudes.The area affected by freeze–thaw erosion in China exceeds 13%of the national territory.So understanding the effect of f...Seasonal freeze–thaw processes have led to severe soil erosion in the middle and high latitudes.The area affected by freeze–thaw erosion in China exceeds 13%of the national territory.So understanding the effect of freeze–thaw on erosion process is of great significance for soil and water conservation as well as for ecological engineering.In this study,we designed simulated rainfall experiments to investigate soil erosion processes under two soil conditions,unfrozen slope(UFS)and frozen slope(FS),and three rainfall intensities of 0.6,0.9 and 1.2 mm/min.The results showed that the initial runoff time of FS occurred much earlier than that of the UFS.Under the same rainfall intensity,the runoff of FS is 1.17–1.26 times that of UFS;and the sediment yield of FS is 6.48–10.49 times that of UFS.With increasing rainfall time,rills were produced on the slope.After the appearance of the rills,the sediment yield on the FS accounts for 74%–86%of the total sediment yield.Rill erosion was the main reason for the increase in soil erosion rate on FS,and the reduction in water percolation resulting from frozen layers was one of the important factors leading to the advancement of rills on slope.A linear relationship existed between the cumulative runoff and the sediment yield of UFS and FS(R2>0.97,P<0.01).The average mean weight diameter(MWD)on the slope erosion particles was as follows:UFS0.9(73.84μm)>FS0.6(72.30μm)>UFS1.2(72.23μm)>substrate(71.23μm)>FS1.2(71.06μm)>FS0.9(70.72μm).During the early stage of the rainfall,the MWD of the FS was relatively large.However,during the middle to late rainfall,the particle composition gradually approached that of the soil substrate.Under different rainfall intensities,the mean soil erodibility(MK)of the FS was 7.22 times that of the UFS.The ratio of the mean regression coefficient C2(MC2)between FS and UFS was roughly correspondent with MK.Therefore,the parameter C2 can be used to evaluate soil erodibility after the appearance of the rills.This article explored the influence mechanism of freeze–thaw effects on loess soil erosion and provided a theoretical basis for further studies on soil erosion in the loess hilly regions.展开更多
基金supported by the National Natural Science Foundation of China (41301072, 41230630,41101068)National Key Basic Research Program of China (973 Program No. 2012CB026102)+2 种基金Natural Science Foundation of Inner Mongolia (2013MS0702)the Program of Higher-level talents of Inner Mongolia University (30105-125146)the Open Project Program of the State Key Laboratory of Frozen Soil Engineering (SKLFSE201208)
文摘To investigate the mechanical properties of ice-saturated frozen soil, a series of triaxial tests under various confining pressures(0.5 to 9.0 MPa) on ice-saturated frozen loess with ice content of 23.7% were carried out at a temperature-6 °C, and at 1.25 mm/min of loading rate. The triaxial tests include two loading modes, one with monotonic loading(i.e., triaxial compression), and another with static cycle loading. The test results under triaxial compression show that the strength and deformation behaviors of ice-saturated frozen loess are affected by confining pressure. According to the test results of triaxial loading-unloading cycle test, the elastic modulus evolution with the number of cycles under different confining pressures are analyzed.
基金This project is supported in part by the Natural Science Foundation of China (Nos.41301070,41301071)the West Light Program for Talent Cultivation of the Chinese Academy of Sciences (2013-03)the project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry,granted to Dr.Ze Zhang
文摘In order to determine the changing rule of long-term frozen soil strength and elucidate the connection between long-term strength and soil physical properties,frozen loess was subjected to 4,6,8,10,and 50 freeze-thaw cycles,under closed-state conditions in a constant-temperature box.The frozen samples were tested on a spherical template indenter,and the results show that under the effect of repeated freeze-thaw cycles,the long-term strength of frozen loess decreased; changes in the mechanical property indices were highly unstable during the first 10 cycles; the soil strength and density were the greatest at the eighth cycle while the void ratio was the smallest; and after eight cycles all of the indices had less fluctuation and certain rising or falling tendencies.By converting the number of freeze-thaw cycles into elapsed time in the tests,three different forecasting methods of long-term soil strength could be assessed and the soil equivalent cohesive force after 10 years,20 years,or 30 years could be estimated.
基金This study was funded by the National Natural Science Foundation of China(grant number 51769013)the Basic Research Innovation Group of Gansu Province(20JR5RA478).
文摘In seasonally frozen soil regions,freezing-thawing action and hydrothermal effect have strong influence on physical and mechanical behavior of shallow soil.A field experiment on the Loess Plateau in Northwest China was carried out to analyze the freezing-thawing process and hydrothermal characteristics of shallow soil considering the climate influence.The results show that the maximum seasonal freezing depth under bare ground surface in this area is from 20 cm to 50 cm.The ground temperature shows a similar changing trend with air temperature,but it has lagged behind the air temperature,and the ground temperature amplitude exponentially decreases with the increase of soil depth.The seasonally frozen soil has experienced four typical stages:unfrozen period,alternate freezing period,freezing period and alternate thawing period.The freezing-thawing process is characterized by unidirectional freezing and bidirectional thawing.The water content of shallow soil is significantly affected by air temperature,evaporation and precipitation,and the soil water content shows a"low-high-low"changing trend with the increase of depth.The soil temperature and water content interact with each other,and are often coupled.The variation trend of soil moisture with time is consistent with the change trend of the ground temperature with time in each soil layer,andthe degree of consistency is higher in the near surface soil than that in the lower layer.Also,the spatial-temporal characteristics of soil moisture and temperature is that the volumetric water content and ground temperatureof near surface soil have strong variability,and the range valueKa and coefficient of variation Cvof soil water content and ground temperaturein different seasons show a decreasing trend with the increase of depth.
基金the National Key Research and Development Program of China(2017YFC0403605)the National Natural Science Foundation of China(413517033)+1 种基金the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research(SKL2018CG04)the Shaanxi Province Innovation Talent Promotion Plan Project Technology Innovation Team(2018TD-037)。
文摘Seasonal freeze–thaw processes have led to severe soil erosion in the middle and high latitudes.The area affected by freeze–thaw erosion in China exceeds 13%of the national territory.So understanding the effect of freeze–thaw on erosion process is of great significance for soil and water conservation as well as for ecological engineering.In this study,we designed simulated rainfall experiments to investigate soil erosion processes under two soil conditions,unfrozen slope(UFS)and frozen slope(FS),and three rainfall intensities of 0.6,0.9 and 1.2 mm/min.The results showed that the initial runoff time of FS occurred much earlier than that of the UFS.Under the same rainfall intensity,the runoff of FS is 1.17–1.26 times that of UFS;and the sediment yield of FS is 6.48–10.49 times that of UFS.With increasing rainfall time,rills were produced on the slope.After the appearance of the rills,the sediment yield on the FS accounts for 74%–86%of the total sediment yield.Rill erosion was the main reason for the increase in soil erosion rate on FS,and the reduction in water percolation resulting from frozen layers was one of the important factors leading to the advancement of rills on slope.A linear relationship existed between the cumulative runoff and the sediment yield of UFS and FS(R2>0.97,P<0.01).The average mean weight diameter(MWD)on the slope erosion particles was as follows:UFS0.9(73.84μm)>FS0.6(72.30μm)>UFS1.2(72.23μm)>substrate(71.23μm)>FS1.2(71.06μm)>FS0.9(70.72μm).During the early stage of the rainfall,the MWD of the FS was relatively large.However,during the middle to late rainfall,the particle composition gradually approached that of the soil substrate.Under different rainfall intensities,the mean soil erodibility(MK)of the FS was 7.22 times that of the UFS.The ratio of the mean regression coefficient C2(MC2)between FS and UFS was roughly correspondent with MK.Therefore,the parameter C2 can be used to evaluate soil erodibility after the appearance of the rills.This article explored the influence mechanism of freeze–thaw effects on loess soil erosion and provided a theoretical basis for further studies on soil erosion in the loess hilly regions.