The microstructure formation and mechanical property involving icosahedral quasicrystal (I-phase) in the Y-rich Mg-Zn-Y alloy have been studied. The equilibrium formation of I-phase from the Y-rich Mg-Zn-Y melt is ...The microstructure formation and mechanical property involving icosahedral quasicrystal (I-phase) in the Y-rich Mg-Zn-Y alloy have been studied. The equilibrium formation of I-phase from the Y-rich Mg-Zn-Y melt is through a peritectic reaction between the Y-rich melt and the primary W-phase, which is discussed in detail. The independent nucleation and coupling growth mechanism between the W-phase and the I-phase, from the melt, are revealed, which is significant for understanding the peritectic reaction process involving icosahedral quasicrystal in the Mg-Zn-Y alloy. The mechanism of the quasicrystal phase strengthened magnesium alloys is also discussed here.展开更多
基金the National Natural Science Foundation of China(Nos.50571081,50671083)Aeronautical Foundation of China(No.04G53042).
文摘The microstructure formation and mechanical property involving icosahedral quasicrystal (I-phase) in the Y-rich Mg-Zn-Y alloy have been studied. The equilibrium formation of I-phase from the Y-rich Mg-Zn-Y melt is through a peritectic reaction between the Y-rich melt and the primary W-phase, which is discussed in detail. The independent nucleation and coupling growth mechanism between the W-phase and the I-phase, from the melt, are revealed, which is significant for understanding the peritectic reaction process involving icosahedral quasicrystal in the Mg-Zn-Y alloy. The mechanism of the quasicrystal phase strengthened magnesium alloys is also discussed here.