The paper aims to investigate different types of weighted ideal statistical convergence and strongly weighted ideal convergence of double sequences of fuzzy numbers. Relations connecting ideal statistical convergence ...The paper aims to investigate different types of weighted ideal statistical convergence and strongly weighted ideal convergence of double sequences of fuzzy numbers. Relations connecting ideal statistical convergence and strongly ideal convergence have been investigated in the environment of the newly defined classes of double sequences of fuzzy numbers. At the same time, we have examined relevant inclusion relations concerning weighted (<i>λ</i>, <i>μ</i>)-ideal statistical convergence and strongly weighted (<i>λ</i>, <i>μ</i>)-ideal convergence of double sequences of fuzzy numbers. Also, some properties of these new sequence spaces are investigated.展开更多
Let I 2N be an ideal and let XI = span{χI : I ∈ I}, and let pI be the quotient norm of l∞/XI. In this paper, we show first that for each proper ideal I 2N, the ideal convergence deduced by I is equivalent to p...Let I 2N be an ideal and let XI = span{χI : I ∈ I}, and let pI be the quotient norm of l∞/XI. In this paper, we show first that for each proper ideal I 2N, the ideal convergence deduced by I is equivalent to pI-kernel convergence. In addition, let K = {x*oχ(·) : x*∈ p(e)}, where p(x) = lim supn→∞1/n(∑k=1n|x(k)|, and let Iμ = {A N : μ(A) = 0} for all μ = x*oχ(·) ∈ K. Then Iμ is a proper ideal. We also show that the ideal convergence deduced by the proper ideal Iμ, the p-kernel convergence and the statistical convergence are also equivalent.展开更多
The notion of ideal convergence is a generalization of statistical convecgence which has been intensively investigated in last few years. For an admissible ideal ∮ C N × N, the aim of the present paper is to int...The notion of ideal convergence is a generalization of statistical convecgence which has been intensively investigated in last few years. For an admissible ideal ∮ C N × N, the aim of the present paper is to introduce the concepts of ∮-convergence and :∮*-convergence for double sequences on probabilistic normed spaces (PN spaces for short). We give some relations related to these notions and find condition on the ideal ∮ for which both the notions coincide. We also define ∮-Cauchy and :∮*- Cauchy double sequences on PN spaces and show that ∮-convergent double sequences are ∮-Cauchy on these spaces. We establish example which shows that our method of convergence for double sequences on PN spaces is more general.展开更多
In this paper, we extend the notions of ideal statistically convergence for sequence of fuzzy number. We introduce the notions ideal statistically pre-Cauchy triple sequences of fuzzy number about Orlicz function, and...In this paper, we extend the notions of ideal statistically convergence for sequence of fuzzy number. We introduce the notions ideal statistically pre-Cauchy triple sequences of fuzzy number about Orlicz function, and give some correlation theorem. It is shown that <em>x</em> = {<em>x<sub>ijk</sub></em>} is ideal statistically pre-Cauchy if and only if <img src="Edit_0f9eaa1e-440b-4bac-8bae-c50bb5e5c244.bmp" alt="" /> <em>D </em>(<em>x<sub>ijk</sub></em>, <em>x<sub>pqr</sub></em>) ≥ <em>ε</em>, <em>i</em> ≤ <em>m</em>,<em> j </em>≤ <em>n</em>, <em>t </em>≤ <em>k</em>}| ≥ <em>δ</em>} ∈<em>I</em>. At the same time, we have proved <em>x</em> = {<em>x<sub>ijk</sub></em>} is ideal statistically convergent to <em>x</em><sub>0</sub> if and only if <img src="Edit_343f4dfc-82c3-4985-aebc-95c52795bb2f.bmp" alt="" />. Also, some properties of these new sequence spaces are investigated.展开更多
We introduce a class of cardinal invariants sI for ideals I onωwhich arise naturally from the FinBW property introduced by Filipów et al.(2007).Let I be an ideal onω.Define sI=min{|X|:X■[ω]ω,B∈I+,?x∈X(Bx,B...We introduce a class of cardinal invariants sI for ideals I onωwhich arise naturally from the FinBW property introduced by Filipów et al.(2007).Let I be an ideal onω.Define sI=min{|X|:X■[ω]ω,B∈I+,?x∈X(Bx,B∩x∈[ω]ω)}.We characterize them and compare them with other cardinal invariants of the continuum.展开更多
文摘The paper aims to investigate different types of weighted ideal statistical convergence and strongly weighted ideal convergence of double sequences of fuzzy numbers. Relations connecting ideal statistical convergence and strongly ideal convergence have been investigated in the environment of the newly defined classes of double sequences of fuzzy numbers. At the same time, we have examined relevant inclusion relations concerning weighted (<i>λ</i>, <i>μ</i>)-ideal statistical convergence and strongly weighted (<i>λ</i>, <i>μ</i>)-ideal convergence of double sequences of fuzzy numbers. Also, some properties of these new sequence spaces are investigated.
基金supported by Plan Project of Education Department of Fujian Province(Grant No.JA11275)
文摘Let I 2N be an ideal and let XI = span{χI : I ∈ I}, and let pI be the quotient norm of l∞/XI. In this paper, we show first that for each proper ideal I 2N, the ideal convergence deduced by I is equivalent to pI-kernel convergence. In addition, let K = {x*oχ(·) : x*∈ p(e)}, where p(x) = lim supn→∞1/n(∑k=1n|x(k)|, and let Iμ = {A N : μ(A) = 0} for all μ = x*oχ(·) ∈ K. Then Iμ is a proper ideal. We also show that the ideal convergence deduced by the proper ideal Iμ, the p-kernel convergence and the statistical convergence are also equivalent.
文摘The notion of ideal convergence is a generalization of statistical convecgence which has been intensively investigated in last few years. For an admissible ideal ∮ C N × N, the aim of the present paper is to introduce the concepts of ∮-convergence and :∮*-convergence for double sequences on probabilistic normed spaces (PN spaces for short). We give some relations related to these notions and find condition on the ideal ∮ for which both the notions coincide. We also define ∮-Cauchy and :∮*- Cauchy double sequences on PN spaces and show that ∮-convergent double sequences are ∮-Cauchy on these spaces. We establish example which shows that our method of convergence for double sequences on PN spaces is more general.
文摘In this paper, we extend the notions of ideal statistically convergence for sequence of fuzzy number. We introduce the notions ideal statistically pre-Cauchy triple sequences of fuzzy number about Orlicz function, and give some correlation theorem. It is shown that <em>x</em> = {<em>x<sub>ijk</sub></em>} is ideal statistically pre-Cauchy if and only if <img src="Edit_0f9eaa1e-440b-4bac-8bae-c50bb5e5c244.bmp" alt="" /> <em>D </em>(<em>x<sub>ijk</sub></em>, <em>x<sub>pqr</sub></em>) ≥ <em>ε</em>, <em>i</em> ≤ <em>m</em>,<em> j </em>≤ <em>n</em>, <em>t </em>≤ <em>k</em>}| ≥ <em>δ</em>} ∈<em>I</em>. At the same time, we have proved <em>x</em> = {<em>x<sub>ijk</sub></em>} is ideal statistically convergent to <em>x</em><sub>0</sub> if and only if <img src="Edit_343f4dfc-82c3-4985-aebc-95c52795bb2f.bmp" alt="" />. Also, some properties of these new sequence spaces are investigated.
基金supported by National Natural Science Foundation of China(Grant Nos.11601443,11801386 and 11771311)。
文摘We introduce a class of cardinal invariants sI for ideals I onωwhich arise naturally from the FinBW property introduced by Filipów et al.(2007).Let I be an ideal onω.Define sI=min{|X|:X■[ω]ω,B∈I+,?x∈X(Bx,B∩x∈[ω]ω)}.We characterize them and compare them with other cardinal invariants of the continuum.