For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method...For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method, and examine these performances by simulation. By comparing this method with the nonlinear least square fitting (NLSF) method and the linear regression of the sum (LRS) method in derivations and simulations, we find that this method can achieve the same or even better precision, comparable accuracy, and lower computation cost. We test this method by experimental decay signals. The results are in agreement with the ones obtained from the nonlinear least square fitting method.展开更多
The moving-mean method is one of the conventional approaches for trend-extraction from a data set. It is usually applied in an empirical way. The smoothing degree of the trend depends on the selections of window lengt...The moving-mean method is one of the conventional approaches for trend-extraction from a data set. It is usually applied in an empirical way. The smoothing degree of the trend depends on the selections of window length and weighted coefficients, which are associated with the change pattern of the data. Are there any uniform criteria for determining them? The present article is a reaction to this fundamental problem. By investigating many kinds of data, the results show that: 1) Within a certain range, the more points which participate in moving-mean, the better the trend function. However, in case the window length is too long, the trend function may tend to the ordinary global mean. 2) For a given window length, what matters is the choice of weighted coefficients. As the five-point case concerned, the local-midpoint, local-mean and global-mean criteria hold. Among these three criteria, the local-mean one has the strongest adaptability, which is suggested for your usage.展开更多
基金supported by the Preeminent Youth Fund of Sichuan Province,China(Grant No.2012JQ0012)the National Natural Science Foundation of China(Grant Nos.11173008,10974202,and 60978049)the National Key Scientific and Research Equipment Development Project of China(Grant No.ZDYZ2013-2)
文摘For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method, and examine these performances by simulation. By comparing this method with the nonlinear least square fitting (NLSF) method and the linear regression of the sum (LRS) method in derivations and simulations, we find that this method can achieve the same or even better precision, comparable accuracy, and lower computation cost. We test this method by experimental decay signals. The results are in agreement with the ones obtained from the nonlinear least square fitting method.
文摘The moving-mean method is one of the conventional approaches for trend-extraction from a data set. It is usually applied in an empirical way. The smoothing degree of the trend depends on the selections of window length and weighted coefficients, which are associated with the change pattern of the data. Are there any uniform criteria for determining them? The present article is a reaction to this fundamental problem. By investigating many kinds of data, the results show that: 1) Within a certain range, the more points which participate in moving-mean, the better the trend function. However, in case the window length is too long, the trend function may tend to the ordinary global mean. 2) For a given window length, what matters is the choice of weighted coefficients. As the five-point case concerned, the local-midpoint, local-mean and global-mean criteria hold. Among these three criteria, the local-mean one has the strongest adaptability, which is suggested for your usage.