It is well established that Nash equilibrium exists within the framework of mixed strategies in strategic-form non-cooperative games. However, finding the Nash equilibrium generally belongs to the class of problems kn...It is well established that Nash equilibrium exists within the framework of mixed strategies in strategic-form non-cooperative games. However, finding the Nash equilibrium generally belongs to the class of problems known as PPAD (Polynomial Parity Argument on Directed graphs), for which no polynomial-time solution methods are known, even for two-player games. This paper demonstrates that in fixed-sum two-player games (including zero-sum games), the Nash equilibrium forms a convex set, and has a unique expected payoff. Furthermore, these equilibria are Pareto optimal. Additionally, it is shown that the Nash equilibrium of fixed-sum two-player games can theoretically be found in polynomial time using the principal-dual interior point method, a solution method of linear programming.展开更多
A new three-dimensional (3D) continuous autonomous system with one parameter and three quadratic terms is presented firstly in this paper. Countless embedded trumpet-shaped chaotic attractors in two opposite directi...A new three-dimensional (3D) continuous autonomous system with one parameter and three quadratic terms is presented firstly in this paper. Countless embedded trumpet-shaped chaotic attractors in two opposite directions are generated from the system as time goes on. The basic dynamical behaviors of the strange chaotic system are investigated. Another more complex 3D system with the same capability of generating countless embedded trumpet-shaped chaotic attractors is also put forward.展开更多
In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of non...In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild conditions.展开更多
The purpose of this paper is to present a new iterative scheme for finding a common solution of the generalized mixed equilibrium problems with an infinite family of inverse strongly monotone mappings and the fixed po...The purpose of this paper is to present a new iterative scheme for finding a common solution of the generalized mixed equilibrium problems with an infinite family of inverse strongly monotone mappings and the fixed point problems of demimetric mappings under nonlinear transformations in Banach spaces. Applications are also included. The results in this paper are the extension and improvement of the recent results in the literature.展开更多
The present article studies the stability conditions of central control artificial equilibrium generalized restricted problem of three bodies. It is generalized in the sense that here we have taken the larger primary ...The present article studies the stability conditions of central control artificial equilibrium generalized restricted problem of three bodies. It is generalized in the sense that here we have taken the larger primary body to be in shape of an oblate spheroid. The equilibrium points are sought by the application of the propellant for which it would just balance the gravitational forces. The launching flight of such a satellite is seen to be applicable for having arbitrary space stations for these different missions. Specialty of the result of the investigation lies in the fact that an arbitrary space station can be formed to attain any specified mission.展开更多
The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating ...The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.展开更多
Throughout this paper, we introduce a new hybrid iterative algorithm for finding a common element of the set of common fixed points of a finite family of uniformly asymptotically nonexpansive semigroups and the set of...Throughout this paper, we introduce a new hybrid iterative algorithm for finding a common element of the set of common fixed points of a finite family of uniformly asymptotically nonexpansive semigroups and the set of solutions of an equilibrium problem in the framework of Hilbert spaces. We then prove the strong convergence theorem with respect to the proposed iterative algorithm. Our results in this paper extend and improve some recent known results.展开更多
The aim of this paper, is to introduce and study a general iterative algorithm concerning the new mappings which the sequences generated by our proposed scheme converge strongly to a common element of the set of solut...The aim of this paper, is to introduce and study a general iterative algorithm concerning the new mappings which the sequences generated by our proposed scheme converge strongly to a common element of the set of solutions of a mixed equilibrium problem, the set of common fixed points of a finite family of nonexpansive mappings and the set of solutions of the variational inequality for a relaxed cocoercive mapping in a real Hilbert space. In addition, we obtain some applications by using this result. The results obtained in this paper generalize and refine some known results in the current literature.展开更多
The paper deals with the existence of equilibrium points in the restricted three-body problem when the smaller primary is an oblate spheroid and the infinitesimal body is of variable mass. Following the method of smal...The paper deals with the existence of equilibrium points in the restricted three-body problem when the smaller primary is an oblate spheroid and the infinitesimal body is of variable mass. Following the method of small parameters;the co-ordinates of collinear equilibrium points have been calculated, whereas the co-ordinates of triangular equilibrium points are established by classical method. On studying the surface of zero-velocity curves, it is found that the mass reduction factor has very minor effect on the location of the equilibrium points;whereas the oblateness parameter of the smaller primary has a significant role on the existence of equilibrium points.展开更多
Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to e...Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to enhance the speed of the convergence and reduce computational cost,the algorithms used a new step size and a cutting hyperplane.The first algorithm was proved to be weak convergence,while the second algorithm used a modified version of Halpern iteration to obtain strong convergence.Finally,numerical experiments on several specific problems and comparisons with other algorithms verified the superiority of the proposed algorithms.展开更多
This paper studies the existence and stability of the artificial equilibrium points (AEPs) in the low-thrust restricted three-body problem when both the primaries are oblate spheroids. The artificial equilibrium point...This paper studies the existence and stability of the artificial equilibrium points (AEPs) in the low-thrust restricted three-body problem when both the primaries are oblate spheroids. The artificial equilibrium points (AEPs) are generated by canceling the gravitational and centrifugal forces with continuous low-thrust at a non-equilibrium point. Some graphical investigations are shown for the effects of the relative parameters which characterized the locations of the AEPs. Also, the numerical values of AEPs have been calculated. The positions of these AEPs will depend not only also on magnitude and directions of low-thrust acceleration. The linear stability of the AEPs has been investigated. We have determined the stability regions in the xy, xz and yz-planes and studied the effect of oblateness parameters A1(0A1?and ?A2(0A2<1) on the motion of the spacecraft. We have found that the stability regions reduce around both the primaries for the increasing values of oblateness of the primaries. Finally, we have plotted the zero velocity curves to determine the possible regions of motion of the spacecraft.展开更多
The recently proposed method of our research group named as directional Lyapunov exponents(DLEs) is presented. Then, DLEs are used to analyze the eigenstructure of the output phase space around the equilibrium point...The recently proposed method of our research group named as directional Lyapunov exponents(DLEs) is presented. Then, DLEs are used to analyze the eigenstructure of the output phase space around the equilibrium points. Finally, the impacts of the superlattice parameter changes on the characteristics of the output chaotic signal are analyzed. The experimental results show that parameter changes of the superlattice will affect the eigenstructure around the equilibrium points in the output phase space, and DLEs are sensitive to these changes.展开更多
The aim of this paper is to study the long-term behavior of strongly damped wave equations with a Lyapunov function. Using the theory established by estimating the Z2 index of some sets and the idea of invariant sets ...The aim of this paper is to study the long-term behavior of strongly damped wave equations with a Lyapunov function. Using the theory established by estimating the Z2 index of some sets and the idea of invariant sets of semi-flow,the properties of the global attractor for strongly damped wave equation are discussed. The existence of multiple equilibrium points in global attractor for strongly damped wave equations with critical growth of nonlinearity is obtained. And under some additional condition, the infinite dimension of the attractor is proven.展开更多
A geometrical theorem for the static equilibrium of a common-point-force system has been proven by means of virtual-work principle: The equilibrium point of a common-point force system has a minimal weighted distance ...A geometrical theorem for the static equilibrium of a common-point-force system has been proven by means of virtual-work principle: The equilibrium point of a common-point force system has a minimal weighted distance summation to every fixed point arbitrarily given on each force line with a weighing factor proportional to corresponding force value. Especially the mechanical simulating technique for its inverse problem has been realized by means of pulley block. The conclusions for the inverse problem derived from mechanic method are in accordance with that given by the pure mathematical method, and the self-consistence of the theorem and its inverse problem has been demonstrated. Some application examples in engineering, economy and mathematics have been discussed, especially the possible application in the research of molecular structure, has also been predicted.展开更多
文摘It is well established that Nash equilibrium exists within the framework of mixed strategies in strategic-form non-cooperative games. However, finding the Nash equilibrium generally belongs to the class of problems known as PPAD (Polynomial Parity Argument on Directed graphs), for which no polynomial-time solution methods are known, even for two-player games. This paper demonstrates that in fixed-sum two-player games (including zero-sum games), the Nash equilibrium forms a convex set, and has a unique expected payoff. Furthermore, these equilibria are Pareto optimal. Additionally, it is shown that the Nash equilibrium of fixed-sum two-player games can theoretically be found in polynomial time using the principal-dual interior point method, a solution method of linear programming.
基金supported by the Science Research Foundation of Liaoning Provincial Education Department,China(Grant No.L2013229)
文摘A new three-dimensional (3D) continuous autonomous system with one parameter and three quadratic terms is presented firstly in this paper. Countless embedded trumpet-shaped chaotic attractors in two opposite directions are generated from the system as time goes on. The basic dynamical behaviors of the strange chaotic system are investigated. Another more complex 3D system with the same capability of generating countless embedded trumpet-shaped chaotic attractors is also put forward.
文摘In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild conditions.
文摘The purpose of this paper is to present a new iterative scheme for finding a common solution of the generalized mixed equilibrium problems with an infinite family of inverse strongly monotone mappings and the fixed point problems of demimetric mappings under nonlinear transformations in Banach spaces. Applications are also included. The results in this paper are the extension and improvement of the recent results in the literature.
文摘The present article studies the stability conditions of central control artificial equilibrium generalized restricted problem of three bodies. It is generalized in the sense that here we have taken the larger primary body to be in shape of an oblate spheroid. The equilibrium points are sought by the application of the propellant for which it would just balance the gravitational forces. The launching flight of such a satellite is seen to be applicable for having arbitrary space stations for these different missions. Specialty of the result of the investigation lies in the fact that an arbitrary space station can be formed to attain any specified mission.
基金supported by the Natural Science Foundation of Yibin University (No.2009-Z003)
文摘The purpose of this paper is to find the solutions to the quadratic mini- mization problem by using the resolvent approach. Under suitable conditions, some new strong convergence theorems are proved for approximating a solution of the above min- imization problem. The results presented in the paper extend and improve some recent results.
文摘Throughout this paper, we introduce a new hybrid iterative algorithm for finding a common element of the set of common fixed points of a finite family of uniformly asymptotically nonexpansive semigroups and the set of solutions of an equilibrium problem in the framework of Hilbert spaces. We then prove the strong convergence theorem with respect to the proposed iterative algorithm. Our results in this paper extend and improve some recent known results.
文摘The aim of this paper, is to introduce and study a general iterative algorithm concerning the new mappings which the sequences generated by our proposed scheme converge strongly to a common element of the set of solutions of a mixed equilibrium problem, the set of common fixed points of a finite family of nonexpansive mappings and the set of solutions of the variational inequality for a relaxed cocoercive mapping in a real Hilbert space. In addition, we obtain some applications by using this result. The results obtained in this paper generalize and refine some known results in the current literature.
文摘The paper deals with the existence of equilibrium points in the restricted three-body problem when the smaller primary is an oblate spheroid and the infinitesimal body is of variable mass. Following the method of small parameters;the co-ordinates of collinear equilibrium points have been calculated, whereas the co-ordinates of triangular equilibrium points are established by classical method. On studying the surface of zero-velocity curves, it is found that the mass reduction factor has very minor effect on the location of the equilibrium points;whereas the oblateness parameter of the smaller primary has a significant role on the existence of equilibrium points.
文摘Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to enhance the speed of the convergence and reduce computational cost,the algorithms used a new step size and a cutting hyperplane.The first algorithm was proved to be weak convergence,while the second algorithm used a modified version of Halpern iteration to obtain strong convergence.Finally,numerical experiments on several specific problems and comparisons with other algorithms verified the superiority of the proposed algorithms.
文摘This paper studies the existence and stability of the artificial equilibrium points (AEPs) in the low-thrust restricted three-body problem when both the primaries are oblate spheroids. The artificial equilibrium points (AEPs) are generated by canceling the gravitational and centrifugal forces with continuous low-thrust at a non-equilibrium point. Some graphical investigations are shown for the effects of the relative parameters which characterized the locations of the AEPs. Also, the numerical values of AEPs have been calculated. The positions of these AEPs will depend not only also on magnitude and directions of low-thrust acceleration. The linear stability of the AEPs has been investigated. We have determined the stability regions in the xy, xz and yz-planes and studied the effect of oblateness parameters A1(0A1?and ?A2(0A2<1) on the motion of the spacecraft. We have found that the stability regions reduce around both the primaries for the increasing values of oblateness of the primaries. Finally, we have plotted the zero velocity curves to determine the possible regions of motion of the spacecraft.
文摘The recently proposed method of our research group named as directional Lyapunov exponents(DLEs) is presented. Then, DLEs are used to analyze the eigenstructure of the output phase space around the equilibrium points. Finally, the impacts of the superlattice parameter changes on the characteristics of the output chaotic signal are analyzed. The experimental results show that parameter changes of the superlattice will affect the eigenstructure around the equilibrium points in the output phase space, and DLEs are sensitive to these changes.
基金National Natural Science Foundations of China(Nos.11501096,11526100)Fundamental Research Funds for the Central Universities,China(No.2232015D3-36)+1 种基金Natural Science Fund for Colleges and Universities in Jiangsu Province,China(No.15KJB110005)Qinglan Project,China
文摘The aim of this paper is to study the long-term behavior of strongly damped wave equations with a Lyapunov function. Using the theory established by estimating the Z2 index of some sets and the idea of invariant sets of semi-flow,the properties of the global attractor for strongly damped wave equation are discussed. The existence of multiple equilibrium points in global attractor for strongly damped wave equations with critical growth of nonlinearity is obtained. And under some additional condition, the infinite dimension of the attractor is proven.
文摘A geometrical theorem for the static equilibrium of a common-point-force system has been proven by means of virtual-work principle: The equilibrium point of a common-point force system has a minimal weighted distance summation to every fixed point arbitrarily given on each force line with a weighing factor proportional to corresponding force value. Especially the mechanical simulating technique for its inverse problem has been realized by means of pulley block. The conclusions for the inverse problem derived from mechanic method are in accordance with that given by the pure mathematical method, and the self-consistence of the theorem and its inverse problem has been demonstrated. Some application examples in engineering, economy and mathematics have been discussed, especially the possible application in the research of molecular structure, has also been predicted.