Chronic hepatitis B causes a liver disease characterized by inflammation of the liver parenchyma. The aim of this study was to investigate the evolution of biological parameters in patients treated with Tenofovir for ...Chronic hepatitis B causes a liver disease characterized by inflammation of the liver parenchyma. The aim of this study was to investigate the evolution of biological parameters in patients treated with Tenofovir for chronic B infection at the Commune V referral health center in Bamako. We obtained a prevalence of 14.15%. The most represented age group was 31 - 40 years, with 36.8%. The sex ratio was 1.44 in favour of men. Viral load was undetectable after 18 months of treatment in 25 patients (42.37%). Tenofovir, the 1st-line drug in Mali, is effective on the biological parameters monitored in patients.展开更多
As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and g...As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and gas well.However,most screens only consider the influence of the internal sand retaining medium parameters in the sand control performance design while ignoring the influence of the plugging of the punching screen on the overall sand retaining performance of the screen.To explore the clogging mechanism of the punching screen,this paper established the clogging mechanism calculation model of a single punching screen sand control unit by using the computational fluid mechanics-discrete element method(CFD-DEM)combined method.According to the combined motion of particles and fluids,the influence of the internal flow state on particle motion and accumulation was analyzed.The results showed that(1)the clogging process of the punching sand control unit is divided into three stages:initial clogging,aggravation of clogging and stability of clogging.In the initial stage of blockage,coarse particles form a loose bridge structure,and blockage often occurs preferentially at the streamline gathering place below chamfering inside the sand control unit.In the stage of blockage intensification,the particle mass develops into a relatively complete sand bridge,which develops from both ends of the opening to the center of the opening.In the stable plugging stage,the sand deposits show a“fan shape”and form a“V-shaped”gully inside the punching slot element.(2)Under a certain reservoir particle-size distribution,The slit length and opening height have a large influence on the permeability and blockage rate,while the slit width size has little influence on the permeability and blockage rate.The microscopic clogging mechanism and its law of the punching screen prevention unit are proposed in this study,which has some field guidance significance for the design of punching screen and sand prevention selection.展开更多
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta...This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.展开更多
AIM:To assess and compare the variations and agreements across different ocular biometric parameters using swept-source optical coherence tomography(SS-OCT)and Scheimpflug tomography in patients diagnosed with catarac...AIM:To assess and compare the variations and agreements across different ocular biometric parameters using swept-source optical coherence tomography(SS-OCT)and Scheimpflug tomography in patients diagnosed with cataract.METHODS:This prospective case series was conducted at Tianjin Medical University Eye Hospital.In total,212 eyes from 212 patients scheduled for phacoemulsification were included.Eyes were evaluated preoperatively using two SSOCT devices(IOLMaster700 and CASIA2)and Scheimpflug tomography(Pentacam).Central corneal thickness(CCT),anterior chamber depth(ACD),aqueous depth(AQD),white-to-white distance(WTW),flat simulated keratometry(Kf),steep simulated keratometry(Ks),mean keratometry(Km),and total corneal keratometry(TKm)were measured.Intraclass correlation coefficient(ICC),95%confidence intervals(CI)and limits of agreement(LoA)widths were conducted to assess differences and correlations between devices.RESULTS:All parameters,except for Ks,were significantly different.Pairwise comparison revealed no significant differences between keratometry obtained by IOLMaster 700 and Pentacam.LoA widths of all paired comparisons for Ks were>0.80 D.Except for WTW between IOLMaster 700 and CASIA2 and between CASIA2 and Pentacam,other Pearson’s coefficients between devices showed a strong correlation(all r>0.95).The ICC of WTW(ICC=0.438,95%CI 0.167-0.625)showed poor reliability.The reliability of CCT,ACD,and AQD was excellent(all ICC>0.95),whereas that of TKm was good(ICC=0.827,95%CI 0.221-0.939).A significant linear correlation was also observed among devices.CONCLUSION:The ocular parameters derived from the use of IOLMaster700,CASIA2,and Pentacam exhibit significant discrepancies;as such,measurements from these devices should not be deemed as interchangeable.展开更多
AIM:To quantitatively measure ocular morphological parameters of guinea pig with Python technology.METHODS:Thirty-six eyeballs of eighteen 3-weekold guinea pigs were measured with keratometer and photographed to obtai...AIM:To quantitatively measure ocular morphological parameters of guinea pig with Python technology.METHODS:Thirty-six eyeballs of eighteen 3-weekold guinea pigs were measured with keratometer and photographed to obtain the horizontal,coronal,and sagittal planes respectively.The corresponding photo pixels-actual length ratio was acquired by a proportional scale.The edge coordinates were identified artificially by ginput function.Circle and conic curve fitting were applied to fit the contour of the eyeball in the sagittal,coronal and horizontal view.The curvature,curvature radius,eccentricity,tilt angle,corneal diameter,and binocular separation angle were calculated according to the geometric principles.Next,the eyeballs were removed,canny edge detection was applied to identify the contour of eyeball in vitro.The results were compared between in vivo and in vitro.RESULTS:Regarding the corneal curvature and curvature radius on the horizontal and sagittal planes,no significant differences were observed among results in vivo,in vitro,and the keratometer.The horizontal and vertical binocular separation angles were 130.6°±6.39°and 129.8°±9.58°respectively.For the corneal curvature radius and eccentricity in vivo,significant differences were observed between horizontal and vertical planes.CONCLUSION:The Graphical interface window of Python makes up the deficiency of edge detection,which requires too much definition in Matlab.There are significant differences between guinea pig and human beings,such as exotropic eye position,oblique oval eyeball,and obvious discrepancy of binoculus.This study helps evaluate objectively the ocular morphological parameters of small experimental animals in emmetropization research.展开更多
AIM:To develop a deep learning-based model for automatic retinal vascular segmentation,analyzing and comparing parameters under diverse glucose metabolic status(normal,prediabetes,diabetes)and to assess the potential ...AIM:To develop a deep learning-based model for automatic retinal vascular segmentation,analyzing and comparing parameters under diverse glucose metabolic status(normal,prediabetes,diabetes)and to assess the potential of artificial intelligence(AI)in image segmentation and retinal vascular parameters for predicting prediabetes and diabetes.METHODS:Retinal fundus photos from 200 normal individuals,200 prediabetic patients,and 200 diabetic patients(600 eyes in total)were used.The U-Net network served as the foundational architecture for retinal arteryvein segmentation.An automatic segmentation and evaluation system for retinal vascular parameters was trained,encompassing 26 parameters.RESULTS:Significant differences were found in retinal vascular parameters across normal,prediabetes,and diabetes groups,including artery diameter(P=0.008),fractal dimension(P=0.000),vein curvature(P=0.003),C-zone artery branching vessel count(P=0.049),C-zone vein branching vessel count(P=0.041),artery branching angle(P=0.005),vein branching angle(P=0.001),artery angle asymmetry degree(P=0.003),vessel length density(P=0.000),and vessel area density(P=0.000),totaling 10 parameters.CONCLUSION:The deep learning-based model facilitates retinal vascular parameter identification and quantification,revealing significant differences.These parameters exhibit potential as biomarkers for prediabetes and diabetes.展开更多
The accumulation of growth-promoting antibiotic residues in animal products and the resistance developed by bacteria in poultry farms has led to a search for natural compounds derived from plants. This study was desig...The accumulation of growth-promoting antibiotic residues in animal products and the resistance developed by bacteria in poultry farms has led to a search for natural compounds derived from plants. This study was designed to promote the production performance of broiler chickens using fresh Cupressus sempervirens leaves infusion. Fresh Cupressus sempervirens leaves were harvested, washed, chopped and ground to a paste using a blender and fermented for three days in a closed container at a rate of 500 g/L of water. The solution obtained was filtered and added at the rate of 2, 4, 6, 8 and 10 ml/L of drinking water. The chickens fed on the graded level of the solution were compared to a control ration without an additive and positive control group supplemented with 1 g antibiotic/kg feed. At the finisher phase and throughout the study period, water intake increased significantly (P < 0.05) with increasing levels of infusion. Feed intake decreased significantly (P < 0.05) with 2 and 4 ml of infusion/L drinking water. Live weight and weight gain were significantly (P < 0.05) higher with 6 ml/L, while feed conversion significantly (P < 0.05) decreased with the same treatment compared with the control treatment without additives (T0). Carcass characteristics were not significantly (P > 0.05) affected by the inclusion of Cupressus sempervirens infusion. Haematological parameters significantly (P < 0.05) increase independently of the rate of incorporation of the infusion into the drinking water, with the exception of RBCs, MCHT and PCT. Serum content in total protein, globulins, LDL cholesterol and triglycerides were significantly (P < 0.05) high with 8 and 10 ml Cupressus sempervirens infusion/litre drinking water as compared to all other treatments. AST, ALT, urea, creatine, albumin, total cholesterol and HDL-cholesterol were not significantly affected. The lactic acid bacteria load increased significantly (P E. coli and salmonella counts decreased significantly (P < 0.05) with infusion compared to the control without additive. In conclusion, 6 ml of Cupressus sempervirens infusion can be used as an alternative to antibiotic feed additives to promote growth performance in broilers.展开更多
Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this pa...Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this paper is to develop a proper methodology to analyze the uncertainties of geomechanical characteristics by focusing on three domains,i.e.data treatment process,schistosity angle,and mineralogy.First,the variabilities of the geomechanical laboratory data of Westwood Mine(Quebec,Canada)were examined statistically by applying different data treatment techniques,through which the most suitable outlier methods were selected for each parameter using multiple decision-making criteria and engineering judgment.Results indicated that some methods exhibited better performance in identifying the possible outliers,although several others were unsuccessful because of their limitation in large sample size.The well-known boxplot method might not be the best outlier method for most geomechanical parameters because its calculated confidence range was not acceptable according to engineering judgment.However,several approaches,including adjusted boxplot,2MADe,and 2SD,worked very well in the detection of true outliers.Also,the statistical tests indicate that the best-fitting probability distribution function for geomechanical intact parameters might not be the normal distribution,unlike what is assumed in most geomechanical studies.Moreover,the negative effects of schistosity angle on the uniaxial compressive strength(UCS)variabilities were reduced by excluding the samples within a specific angle range where the UCS data present the highest variation.Finally,a petrographic analysis was conducted to assess the associated uncertainties such that a logical link was found between the dispersion and the variabilities of hard and soft minerals.展开更多
Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 ...Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 mg/L), Na (28.72 mg/L), Ca (28.94 mg/L), Mg (17.50 mg/L), Cl (11.65 mg/L), TSS (6.27 mg/L), TDS (104.23 mg/L), BOD (2.83 mg/L) and F (0.87 mg/L) were below WHO standards irrespective of their defecation status. The values for electrical conductivity (EC) (2770.50 µs/cm, turbidity (481.24 NTU), dissolved oxygen (DO) (5.32 mg/L), chemical oxygen demand (COD) (445.50 mg/L), K (125.06 mg/L), PO4 (0.78 mg/L) and Fe (0.57 mg/L) were above the WHO limits for safe water. Higher EC and COD values obtained in the study is evidence of pollution of the water sources by organic matter.展开更多
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr...Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon.展开更多
AIM:To quantitatively assess the changes in mean vascular tortuosity(mVT)and mean vascular width(mVW)around the optic disc and their correlation with gestational age(GA)and birth weight(BW)in premature infants without...AIM:To quantitatively assess the changes in mean vascular tortuosity(mVT)and mean vascular width(mVW)around the optic disc and their correlation with gestational age(GA)and birth weight(BW)in premature infants without retinopathy of prematurity(ROP).METHODS:A single-center retrospective study included a total of 133(133 eyes)premature infants[mean corrected gestational age(CGA)43.6wk]without ROP as the premature group and 130(130 eyes)CGA-matched fullterm infants as the control group.The peripapillary mVT and mVW were quantitatively measured using computerassisted techniques.RESULTS:Premature infants had significantly higher mVT(P=0.0032)and lower mVW(P=0.0086)by 2.68(10^(4) cm^(-3))and 1.85μm,respectively.Subgroup analysis with GA showed significant differences(P=0.0244)in mVT between the early preterm and middle to late preterm groups,but the differences between mVW were not significant(P=0.6652).The results of the multiple linear regression model showed a significant negative correlation between GA and BW with mVT after adjusting sex and CGA(P=0.0211 and P=0.0006,respectively).For each day increase in GA at birth,mVT decreased by 0.1281(10^(4) cm^(-3))and for each 1 g increase in BW,mVT decreased by 0.006(10^(4) cm^(-3)).However,GA(P=0.9402)and BW(P=0.7275)were not significantly correlated with mVW.CONCLUSION:Preterm birth significantly affects the peripapillary vascular parameters that indicate higher mVT and narrower mVW in premature infants without ROP.Alterations in these parameters may provide new insights into the pathogenesis of ocular vascular disease.展开更多
Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)...Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.展开更多
Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsands...Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracturepropagation and production was completed. Based on data analysis, the hydraulic fracture parameters wereoptimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influenceof geological and engineering factors in the X1 and X2 development zones in the study area differs significantly.Therefore, it is challenging to adopt a uniform development strategy to achieve rapid production increase. Thedata analysis reveals that the variation in gas production rate is primarily affected by the reservoir thickness andpermeability parameters as geological factors. On the other hand, the amount of treatment fluid and proppantaddition significantly impact the gas production rate as engineering factors. Among these factors, the influence ofgeological factors is more pronounced in block X1. Therefore, the main focus should be on further optimizing thefracturing interval and adjusting the geological development well location. Given the existing well location, thereis limited potential for further optimizing fracture parameters to increase production. For block X2, the fracturingparameters should be optimized. Data screening was conducted to identify outliers in the entire dataset, and adata-driven fracturing parameter optimization method was employed to determine the basic adjustment directionfor reservoir stimulation in the target block. This approach provides insights into the influence of geological,stimulation, and completion parameters on gas production rate. Consequently, the subsequent fracturing parameteroptimization design can significantly reduce the modeling and simulation workload and guide field operations toimprove and optimize hydraulic fracturing efficiency.展开更多
Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i...Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.展开更多
The extruded AZ80+0.4%Ce magnesium alloy was twisted in the temperature range of 300-380℃by using a Gleeble 3500 thermal simulation test machine with a torsion unit.The deformed cylindrical specimens were cooled at a...The extruded AZ80+0.4%Ce magnesium alloy was twisted in the temperature range of 300-380℃by using a Gleeble 3500 thermal simulation test machine with a torsion unit.The deformed cylindrical specimens were cooled at a cooling rate of 10℃/s or 0.1℃/s,respectively,and aged at 170℃.The microstructure analysis results showed that the grain size decreased with increasing specimen radial position from center(SRPC),and that the strong initial basal texture of the extruded magnesium alloy was weakened.Both continuous and discontinuous dynamic recrystallization mechanisms were involved in contributing to the grain refinement for all specimens investigated.And a novel extension twinning induced dynamic recrystallization mechanism was proposed for specimen deformed at 300℃.For the specimens deformed at 300℃and 340℃followed by a slow cooling rate(0.1℃/s),precipitates of various shapes(β-Mg_(17)Al_(12)),with the dominant precipitates being on the grains boundaries,appeared on the surface section.For specimen deformed at 380℃,lamellar precipitates(LPS)in the interiors of the grains were predominant.After aging,the LPS still dominated for specimens twisted at 380℃;however,the LPS gradually decreased with decreasing deformation temperatures from 380℃to 300℃.Dynamically precipitatedβ,especially those decorating the grain boundaries,changed the competition pictures for the LPS and precipitates of other shapes after aging.Interestingly,LPS dominated the areas for the center section of the specimens after aging regardless of deformation temperatures.Low temperature deformation with high SRPC followed by rapid cooling rate increased the micro hardness of the alloy after aging due to refined grain,reduced precipitates size,decreased lamellar spacing as well as strain hardening.展开更多
In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication q...In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication quality.Tubular hydrogenerators are considered the optimal generator for exploiting low-head,high-flow hydro resources,and they have seen increasingly widespread application in China's power systems recent years.However,owing to the compact and constrained internal space of such generators,their internal magnetic-field harmonics are pronounced.Therefore,accurate calculation of their THD and THF is crucial during the analysis and design stages to ensure the quality of power communication.Especially in the electromagnetic field finite element modeling analysis of such generators,the type and order of the finite element meshes may have a significant impact on the THD and THF calculation results,which warrants in-depth research.To address this,this study takes a real 34 MW large tubular hydrogenerator as an example,and establishes its electromagnetic field finite element model under no-load conditions.Two types of meshes,five mesh densities,and two mesh orders are analyzed to reveal the effect of electromagnetic field finite element mesh types and orders on the calculation results of THD and THF for such generators.展开更多
Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation ...Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation software was used to optimize the parameters of the system,according to the parameters obtained from the optimization,a test platform was built and winter heating test was carried out.The simulation results showed that the thickness of the air layer of 75 mm,the total area of the vent holes of 0.24 m^(2),and the thickness of the insulation layer of 120 mm were the optimal construction for the passive part;solar collector area of 28 m^(2),hot water storage tank volume of 1.4 m^(3),mass flow rate of 800 kg/h on the collector side,mass flow rate of 400 kg/h on the heat exchanger side,and output power of auxiliary heat source of 5∼9 kWwere the optimal constructions for active heating system.Test results showed that during the heating period,the system could provide sufficient heat to the room under different heating modes,and the indoor temperature reached over 18°C,which met the heating demand.The economic and environmental benefits of the system were analyzed,and the economic benefits of the systemwere better than coal-fired heating,and the CO_(2) emissionswere reduced by 3,292.25 kg compared with coalfiredheating.The results of the study showed that the combinedactive-passiveheating systemcouldeffectively solve the heating problems existing in rural buildings in Southern Xinjiang,and it also laid the theoretical foundation for the popularization of the combined heating systems.展开更多
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce...In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints.展开更多
The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the pro...The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.展开更多
To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on th...To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.展开更多
文摘Chronic hepatitis B causes a liver disease characterized by inflammation of the liver parenchyma. The aim of this study was to investigate the evolution of biological parameters in patients treated with Tenofovir for chronic B infection at the Commune V referral health center in Bamako. We obtained a prevalence of 14.15%. The most represented age group was 31 - 40 years, with 36.8%. The sex ratio was 1.44 in favour of men. Viral load was undetectable after 18 months of treatment in 25 patients (42.37%). Tenofovir, the 1st-line drug in Mali, is effective on the biological parameters monitored in patients.
文摘As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and gas well.However,most screens only consider the influence of the internal sand retaining medium parameters in the sand control performance design while ignoring the influence of the plugging of the punching screen on the overall sand retaining performance of the screen.To explore the clogging mechanism of the punching screen,this paper established the clogging mechanism calculation model of a single punching screen sand control unit by using the computational fluid mechanics-discrete element method(CFD-DEM)combined method.According to the combined motion of particles and fluids,the influence of the internal flow state on particle motion and accumulation was analyzed.The results showed that(1)the clogging process of the punching sand control unit is divided into three stages:initial clogging,aggravation of clogging and stability of clogging.In the initial stage of blockage,coarse particles form a loose bridge structure,and blockage often occurs preferentially at the streamline gathering place below chamfering inside the sand control unit.In the stage of blockage intensification,the particle mass develops into a relatively complete sand bridge,which develops from both ends of the opening to the center of the opening.In the stable plugging stage,the sand deposits show a“fan shape”and form a“V-shaped”gully inside the punching slot element.(2)Under a certain reservoir particle-size distribution,The slit length and opening height have a large influence on the permeability and blockage rate,while the slit width size has little influence on the permeability and blockage rate.The microscopic clogging mechanism and its law of the punching screen prevention unit are proposed in this study,which has some field guidance significance for the design of punching screen and sand prevention selection.
基金partially supported by the Natural Science Foundation of China (Grant Nos.62103052,52272358)partially supported by the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.
基金Supported by Tianjin Key Medical Discipline (Specialty) Construction Project (No.TJYXZDXK-037A)Weifang Science and Technology Bureau Project (No.2020YX065).
文摘AIM:To assess and compare the variations and agreements across different ocular biometric parameters using swept-source optical coherence tomography(SS-OCT)and Scheimpflug tomography in patients diagnosed with cataract.METHODS:This prospective case series was conducted at Tianjin Medical University Eye Hospital.In total,212 eyes from 212 patients scheduled for phacoemulsification were included.Eyes were evaluated preoperatively using two SSOCT devices(IOLMaster700 and CASIA2)and Scheimpflug tomography(Pentacam).Central corneal thickness(CCT),anterior chamber depth(ACD),aqueous depth(AQD),white-to-white distance(WTW),flat simulated keratometry(Kf),steep simulated keratometry(Ks),mean keratometry(Km),and total corneal keratometry(TKm)were measured.Intraclass correlation coefficient(ICC),95%confidence intervals(CI)and limits of agreement(LoA)widths were conducted to assess differences and correlations between devices.RESULTS:All parameters,except for Ks,were significantly different.Pairwise comparison revealed no significant differences between keratometry obtained by IOLMaster 700 and Pentacam.LoA widths of all paired comparisons for Ks were>0.80 D.Except for WTW between IOLMaster 700 and CASIA2 and between CASIA2 and Pentacam,other Pearson’s coefficients between devices showed a strong correlation(all r>0.95).The ICC of WTW(ICC=0.438,95%CI 0.167-0.625)showed poor reliability.The reliability of CCT,ACD,and AQD was excellent(all ICC>0.95),whereas that of TKm was good(ICC=0.827,95%CI 0.221-0.939).A significant linear correlation was also observed among devices.CONCLUSION:The ocular parameters derived from the use of IOLMaster700,CASIA2,and Pentacam exhibit significant discrepancies;as such,measurements from these devices should not be deemed as interchangeable.
基金Supported by the National Natural Science Foundation of China(No.81400428)Self-selected Projects of Shanghai Children’s Hospital(No.2020R124)Shanghai Children’s Hospital Hospital-level Project Clinical Research Cultivation Special Focus Project(No.2021YLYZ03).
文摘AIM:To quantitatively measure ocular morphological parameters of guinea pig with Python technology.METHODS:Thirty-six eyeballs of eighteen 3-weekold guinea pigs were measured with keratometer and photographed to obtain the horizontal,coronal,and sagittal planes respectively.The corresponding photo pixels-actual length ratio was acquired by a proportional scale.The edge coordinates were identified artificially by ginput function.Circle and conic curve fitting were applied to fit the contour of the eyeball in the sagittal,coronal and horizontal view.The curvature,curvature radius,eccentricity,tilt angle,corneal diameter,and binocular separation angle were calculated according to the geometric principles.Next,the eyeballs were removed,canny edge detection was applied to identify the contour of eyeball in vitro.The results were compared between in vivo and in vitro.RESULTS:Regarding the corneal curvature and curvature radius on the horizontal and sagittal planes,no significant differences were observed among results in vivo,in vitro,and the keratometer.The horizontal and vertical binocular separation angles were 130.6°±6.39°and 129.8°±9.58°respectively.For the corneal curvature radius and eccentricity in vivo,significant differences were observed between horizontal and vertical planes.CONCLUSION:The Graphical interface window of Python makes up the deficiency of edge detection,which requires too much definition in Matlab.There are significant differences between guinea pig and human beings,such as exotropic eye position,oblique oval eyeball,and obvious discrepancy of binoculus.This study helps evaluate objectively the ocular morphological parameters of small experimental animals in emmetropization research.
基金Supported by Shenzhen Science and Technology Program(No.JCYJ20220530153604010).
文摘AIM:To develop a deep learning-based model for automatic retinal vascular segmentation,analyzing and comparing parameters under diverse glucose metabolic status(normal,prediabetes,diabetes)and to assess the potential of artificial intelligence(AI)in image segmentation and retinal vascular parameters for predicting prediabetes and diabetes.METHODS:Retinal fundus photos from 200 normal individuals,200 prediabetic patients,and 200 diabetic patients(600 eyes in total)were used.The U-Net network served as the foundational architecture for retinal arteryvein segmentation.An automatic segmentation and evaluation system for retinal vascular parameters was trained,encompassing 26 parameters.RESULTS:Significant differences were found in retinal vascular parameters across normal,prediabetes,and diabetes groups,including artery diameter(P=0.008),fractal dimension(P=0.000),vein curvature(P=0.003),C-zone artery branching vessel count(P=0.049),C-zone vein branching vessel count(P=0.041),artery branching angle(P=0.005),vein branching angle(P=0.001),artery angle asymmetry degree(P=0.003),vessel length density(P=0.000),and vessel area density(P=0.000),totaling 10 parameters.CONCLUSION:The deep learning-based model facilitates retinal vascular parameter identification and quantification,revealing significant differences.These parameters exhibit potential as biomarkers for prediabetes and diabetes.
文摘The accumulation of growth-promoting antibiotic residues in animal products and the resistance developed by bacteria in poultry farms has led to a search for natural compounds derived from plants. This study was designed to promote the production performance of broiler chickens using fresh Cupressus sempervirens leaves infusion. Fresh Cupressus sempervirens leaves were harvested, washed, chopped and ground to a paste using a blender and fermented for three days in a closed container at a rate of 500 g/L of water. The solution obtained was filtered and added at the rate of 2, 4, 6, 8 and 10 ml/L of drinking water. The chickens fed on the graded level of the solution were compared to a control ration without an additive and positive control group supplemented with 1 g antibiotic/kg feed. At the finisher phase and throughout the study period, water intake increased significantly (P < 0.05) with increasing levels of infusion. Feed intake decreased significantly (P < 0.05) with 2 and 4 ml of infusion/L drinking water. Live weight and weight gain were significantly (P < 0.05) higher with 6 ml/L, while feed conversion significantly (P < 0.05) decreased with the same treatment compared with the control treatment without additives (T0). Carcass characteristics were not significantly (P > 0.05) affected by the inclusion of Cupressus sempervirens infusion. Haematological parameters significantly (P < 0.05) increase independently of the rate of incorporation of the infusion into the drinking water, with the exception of RBCs, MCHT and PCT. Serum content in total protein, globulins, LDL cholesterol and triglycerides were significantly (P < 0.05) high with 8 and 10 ml Cupressus sempervirens infusion/litre drinking water as compared to all other treatments. AST, ALT, urea, creatine, albumin, total cholesterol and HDL-cholesterol were not significantly affected. The lactic acid bacteria load increased significantly (P E. coli and salmonella counts decreased significantly (P < 0.05) with infusion compared to the control without additive. In conclusion, 6 ml of Cupressus sempervirens infusion can be used as an alternative to antibiotic feed additives to promote growth performance in broilers.
基金The authors would like to thank the Natural Sciences and Engineering Research Council of Canada(NSERC),IAMGOLD Corporation,and Westwood mine for supporting and funding this research(Grant No.RDCPJ 520428e17)also NSERC discovery funding(Grant No.RGPIN-2019-06693).
文摘Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this paper is to develop a proper methodology to analyze the uncertainties of geomechanical characteristics by focusing on three domains,i.e.data treatment process,schistosity angle,and mineralogy.First,the variabilities of the geomechanical laboratory data of Westwood Mine(Quebec,Canada)were examined statistically by applying different data treatment techniques,through which the most suitable outlier methods were selected for each parameter using multiple decision-making criteria and engineering judgment.Results indicated that some methods exhibited better performance in identifying the possible outliers,although several others were unsuccessful because of their limitation in large sample size.The well-known boxplot method might not be the best outlier method for most geomechanical parameters because its calculated confidence range was not acceptable according to engineering judgment.However,several approaches,including adjusted boxplot,2MADe,and 2SD,worked very well in the detection of true outliers.Also,the statistical tests indicate that the best-fitting probability distribution function for geomechanical intact parameters might not be the normal distribution,unlike what is assumed in most geomechanical studies.Moreover,the negative effects of schistosity angle on the uniaxial compressive strength(UCS)variabilities were reduced by excluding the samples within a specific angle range where the UCS data present the highest variation.Finally,a petrographic analysis was conducted to assess the associated uncertainties such that a logical link was found between the dispersion and the variabilities of hard and soft minerals.
文摘Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 mg/L), Na (28.72 mg/L), Ca (28.94 mg/L), Mg (17.50 mg/L), Cl (11.65 mg/L), TSS (6.27 mg/L), TDS (104.23 mg/L), BOD (2.83 mg/L) and F (0.87 mg/L) were below WHO standards irrespective of their defecation status. The values for electrical conductivity (EC) (2770.50 µs/cm, turbidity (481.24 NTU), dissolved oxygen (DO) (5.32 mg/L), chemical oxygen demand (COD) (445.50 mg/L), K (125.06 mg/L), PO4 (0.78 mg/L) and Fe (0.57 mg/L) were above the WHO limits for safe water. Higher EC and COD values obtained in the study is evidence of pollution of the water sources by organic matter.
基金financial supports from the National Natural Science Foundation of China(52130104,51821001)High Technology and Key Development Project of Ningbo,China(2019B10102)。
文摘Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon.
基金Supported by the Fundamental Research Funds for the Central Universities (No.WK2100000045)the National Natural Science Foundation of China (No.U19B2044)+1 种基金Hefei Health Care Commission 2022 Applied Medical Research Project (No.Hwk2022yb028)Zhejiang Lab Open Research Project (No.K2022QA0AB04).
文摘AIM:To quantitatively assess the changes in mean vascular tortuosity(mVT)and mean vascular width(mVW)around the optic disc and their correlation with gestational age(GA)and birth weight(BW)in premature infants without retinopathy of prematurity(ROP).METHODS:A single-center retrospective study included a total of 133(133 eyes)premature infants[mean corrected gestational age(CGA)43.6wk]without ROP as the premature group and 130(130 eyes)CGA-matched fullterm infants as the control group.The peripapillary mVT and mVW were quantitatively measured using computerassisted techniques.RESULTS:Premature infants had significantly higher mVT(P=0.0032)and lower mVW(P=0.0086)by 2.68(10^(4) cm^(-3))and 1.85μm,respectively.Subgroup analysis with GA showed significant differences(P=0.0244)in mVT between the early preterm and middle to late preterm groups,but the differences between mVW were not significant(P=0.6652).The results of the multiple linear regression model showed a significant negative correlation between GA and BW with mVT after adjusting sex and CGA(P=0.0211 and P=0.0006,respectively).For each day increase in GA at birth,mVT decreased by 0.1281(10^(4) cm^(-3))and for each 1 g increase in BW,mVT decreased by 0.006(10^(4) cm^(-3)).However,GA(P=0.9402)and BW(P=0.7275)were not significantly correlated with mVW.CONCLUSION:Preterm birth significantly affects the peripapillary vascular parameters that indicate higher mVT and narrower mVW in premature infants without ROP.Alterations in these parameters may provide new insights into the pathogenesis of ocular vascular disease.
基金Meridian Lightweight Technologies Inc.,Strathroy,Ontario Canadathe University of Windsor,Windsor,Ontario,Canada for supporting this workpart of a large project funded by Meridian Lightweight Technologies,Inc.
文摘Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.
基金Research and Application of Key Technologies for Tight Gas Production Improvement and Rehabilitation of Linxing Shenfu(YXKY-ZL-01-2021)。
文摘Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracturepropagation and production was completed. Based on data analysis, the hydraulic fracture parameters wereoptimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influenceof geological and engineering factors in the X1 and X2 development zones in the study area differs significantly.Therefore, it is challenging to adopt a uniform development strategy to achieve rapid production increase. Thedata analysis reveals that the variation in gas production rate is primarily affected by the reservoir thickness andpermeability parameters as geological factors. On the other hand, the amount of treatment fluid and proppantaddition significantly impact the gas production rate as engineering factors. Among these factors, the influence ofgeological factors is more pronounced in block X1. Therefore, the main focus should be on further optimizing thefracturing interval and adjusting the geological development well location. Given the existing well location, thereis limited potential for further optimizing fracture parameters to increase production. For block X2, the fracturingparameters should be optimized. Data screening was conducted to identify outliers in the entire dataset, and adata-driven fracturing parameter optimization method was employed to determine the basic adjustment directionfor reservoir stimulation in the target block. This approach provides insights into the influence of geological,stimulation, and completion parameters on gas production rate. Consequently, the subsequent fracturing parameteroptimization design can significantly reduce the modeling and simulation workload and guide field operations toimprove and optimize hydraulic fracturing efficiency.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFF0708903)Ningbo Municipal Key Technology Research and Development Program of China(Grant No.2022Z006)Youth Fund of National Natural Science Foundation of China(Grant No.52205043)。
文摘Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.
基金supported by key technology research and development project of Shan Xi province(20201102019)Natural science foundation of Shanxi Province(201901D111167)+1 种基金Shanxi Scholarship Council of China(2020–117)JCKY2018408B003Magnesium alloy high-performance XXX multi-directional extrusion technology and XX supporting scientific research project(xxxx-2019-021)。
文摘The extruded AZ80+0.4%Ce magnesium alloy was twisted in the temperature range of 300-380℃by using a Gleeble 3500 thermal simulation test machine with a torsion unit.The deformed cylindrical specimens were cooled at a cooling rate of 10℃/s or 0.1℃/s,respectively,and aged at 170℃.The microstructure analysis results showed that the grain size decreased with increasing specimen radial position from center(SRPC),and that the strong initial basal texture of the extruded magnesium alloy was weakened.Both continuous and discontinuous dynamic recrystallization mechanisms were involved in contributing to the grain refinement for all specimens investigated.And a novel extension twinning induced dynamic recrystallization mechanism was proposed for specimen deformed at 300℃.For the specimens deformed at 300℃and 340℃followed by a slow cooling rate(0.1℃/s),precipitates of various shapes(β-Mg_(17)Al_(12)),with the dominant precipitates being on the grains boundaries,appeared on the surface section.For specimen deformed at 380℃,lamellar precipitates(LPS)in the interiors of the grains were predominant.After aging,the LPS still dominated for specimens twisted at 380℃;however,the LPS gradually decreased with decreasing deformation temperatures from 380℃to 300℃.Dynamically precipitatedβ,especially those decorating the grain boundaries,changed the competition pictures for the LPS and precipitates of other shapes after aging.Interestingly,LPS dominated the areas for the center section of the specimens after aging regardless of deformation temperatures.Low temperature deformation with high SRPC followed by rapid cooling rate increased the micro hardness of the alloy after aging due to refined grain,reduced precipitates size,decreased lamellar spacing as well as strain hardening.
基金sponsored by the National Natural Science Foundation,Youth Foundation of China,Grant/Award Number:51607146Sichuan Natural Sciences Fund,Grant/Award Number:2023NSFSC0295。
文摘In generator design field,waveform total harmonic distortion(THD)and telephone harmonic factor(THF)are parameters commonly used to measure the impact of generator no-load voltage harmonics on the power communication quality.Tubular hydrogenerators are considered the optimal generator for exploiting low-head,high-flow hydro resources,and they have seen increasingly widespread application in China's power systems recent years.However,owing to the compact and constrained internal space of such generators,their internal magnetic-field harmonics are pronounced.Therefore,accurate calculation of their THD and THF is crucial during the analysis and design stages to ensure the quality of power communication.Especially in the electromagnetic field finite element modeling analysis of such generators,the type and order of the finite element meshes may have a significant impact on the THD and THF calculation results,which warrants in-depth research.To address this,this study takes a real 34 MW large tubular hydrogenerator as an example,and establishes its electromagnetic field finite element model under no-load conditions.Two types of meshes,five mesh densities,and two mesh orders are analyzed to reveal the effect of electromagnetic field finite element mesh types and orders on the calculation results of THD and THF for such generators.
基金This study was funded by the Xinjiang Production and Construction Corps Southern Xinjiang Key Industry Support Program Project,Grant Number 2019DB007.
文摘Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation software was used to optimize the parameters of the system,according to the parameters obtained from the optimization,a test platform was built and winter heating test was carried out.The simulation results showed that the thickness of the air layer of 75 mm,the total area of the vent holes of 0.24 m^(2),and the thickness of the insulation layer of 120 mm were the optimal construction for the passive part;solar collector area of 28 m^(2),hot water storage tank volume of 1.4 m^(3),mass flow rate of 800 kg/h on the collector side,mass flow rate of 400 kg/h on the heat exchanger side,and output power of auxiliary heat source of 5∼9 kWwere the optimal constructions for active heating system.Test results showed that during the heating period,the system could provide sufficient heat to the room under different heating modes,and the indoor temperature reached over 18°C,which met the heating demand.The economic and environmental benefits of the system were analyzed,and the economic benefits of the systemwere better than coal-fired heating,and the CO_(2) emissionswere reduced by 3,292.25 kg compared with coalfiredheating.The results of the study showed that the combinedactive-passiveheating systemcouldeffectively solve the heating problems existing in rural buildings in Southern Xinjiang,and it also laid the theoretical foundation for the popularization of the combined heating systems.
基金supported by Guangdong Science and Technology Plan Project(Grant No.20170902,No.20180902)Yangjiang Science and Technology Plan Project(Grant No.SDZX2020063)+1 种基金Shenzhen Key Projects of Innovation and Entrepreneurship Plan Technology(JSGG20210420091802007)Yunfu 2023 Science and Technology Plan Project(S2023020201).
文摘In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints.
文摘The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.
基金supported by the National Natural Science Foundation of China(61701140).
文摘To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.