A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy...In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.展开更多
By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets ...By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias.展开更多
This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the...This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests.展开更多
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo...Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.展开更多
In order to achieve prediction for vibration of rotating machinery, an accurate finite element (FE) model and an efficient parameter identification method of the rotor system are required. In this research, a test r...In order to achieve prediction for vibration of rotating machinery, an accurate finite element (FE) model and an efficient parameter identification method of the rotor system are required. In this research, a test rig is used as a prototype of a rotor system to validate a novel parameter identification technique based on an FE model. Rotor shaft vibration at varying operating speeds is measured and correlated with the FE results. Firstly, the theories of the FE modelling and identification technique are introduced. Then disk unbalance parameter, stiffness and damping coefficients of the bearing supports on the test rig are identified. The calculated responses of the FE model with identified parameters are studied in comparison with the experimental results.展开更多
A distortion identification technique is presented based on Hilbert-Huang transform to identify distortion model and distortion frequency of distorted real-world image sequences. The distortion model is identified sim...A distortion identification technique is presented based on Hilbert-Huang transform to identify distortion model and distortion frequency of distorted real-world image sequences. The distortion model is identified simply based on Hilbert marginal spectral analysis after empirical mode decomposing. And distortion frequency is identified by analyzing the occurrence frequency of instantaneous frequency components of every intrinsic mode functions. Rational digital frequency filter with suitable cutoff frequency is designed to remove undesired fluctuations based on identification results. Experimental results show that this technique can identify distortion model and distortion frequency of displacement sequence accurately and efficiently. Based on identification results, distorted image sequence can be stabilized effectively.展开更多
Data-driven soft sensor is an effective solution to provide rapid and reliable estimations for key quality variables online. The secondary variables affect the primary variable in considerably different speed, and sof...Data-driven soft sensor is an effective solution to provide rapid and reliable estimations for key quality variables online. The secondary variables affect the primary variable in considerably different speed, and soft sensor systems exhibit multi-dynamic characteristics. Thus, the first contribution is improving the model in the previous study with multi-time-constant. The characteristics-separation-based model will be identified in substep way,and the stochastic Newton recursive(SNR) algorithm is adopted. Considering the dual-rate characteristics of soft sensor systems, the proposed model cannot be identified directly. Thus, two auxiliary models are first proposed to offer the intersample estimations at each update period, based on which the improved algorithm(DAM-SNR) is derived. These two auxiliary models function in switching mechanism which has been illustrated in detail. This algorithm serves for the identification of the proposed model together with the SNR algorithm, and the identification procedure is then presented. Finally, the laboratorial case confirms the effectiveness of the proposed soft sensor model and the algorithms.展开更多
The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algori...The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm.展开更多
The accurate mathematical models for complicated structures are verydifficult to construct.The work presented here provides an identification method for estimating the mass, damping , and stiffness matrices of linear ...The accurate mathematical models for complicated structures are verydifficult to construct.The work presented here provides an identification method for estimating the mass, damping , and stiffness matrices of linear dynamical systems from incompleteexperimental data. The mass, stiffness, and damping matrices are assumed to be real,symmetric, and positive definite. The partial set of experimental complex eigenvalues and corresponding eigenvectors are given. In the proposed method the least squaresalgorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters. several illustrative examples, are presented to demonstrate the reliability of the proposed method .It is emphasized thatthe mass, damping and stiffness martices can be identified simultaneously.展开更多
The accurate mathematical models for complicated structures are very difficult to construct.The work presented here provides an identification method for estimating the mass.damping,and stiffness matrices of linear dy...The accurate mathematical models for complicated structures are very difficult to construct.The work presented here provides an identification method for estimating the mass.damping,and stiffness matrices of linear dynamical systems from incomplete experimental data.The mass,stiffness and damping matrices are assumed to be real,symmetric,and positive definite The partial set of experimental complex eigenvalues and corresponding eigenvectors are given.In the proposed method the least squares algorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters.Seeveral illustative examples,are presented to demonstrate the reliability of the proposed method .It is emphasized that the mass,damping and stiffness matrices can be identified simultaneously.展开更多
There is still an obstacle to prevent neural network from wider and more effective applications, i.e., the lack of effective theories of models identification. Based on information theory and its generalization, this ...There is still an obstacle to prevent neural network from wider and more effective applications, i.e., the lack of effective theories of models identification. Based on information theory and its generalization, this paper introduces a universal method to achieve nonlinear models identification. Two key quantities, which are called nonlinear irreducible auto-correlation (NIAC) and generalized nonlinear irreducible auto-correlation (GNIAC), are defined and discussed. NIAC and GNIAC correspond with intrinstic irreducible auto-(dependency) (IAD) and generalized irreducible auto-(dependency) (GIAD) of time series respectively. By investigating the evolving trend of NIAC and GNIAC, the optimal auto-regressive order of nonlinear auto-regressive models could be determined naturally. Subsequently, an efficient algorithm computing NIAC and GNIAC is discussed. Experiments on simulating data sets and typical nonlinear prediction models indicate remarkable correlation between optimal auto-regressive order and the highest order that NIAC-GNIAC have a remarkable non-zero value, therefore demonstrate the validity of the proposal in this paper.展开更多
A new decentralized closcd-loop identification and predictive controller design method for a kind of cascade processes composed of several sub-processes is studied. This kind of cascade processcs has the characteristi...A new decentralized closcd-loop identification and predictive controller design method for a kind of cascade processes composed of several sub-processes is studied. This kind of cascade processcs has the characteristies of one-way connection. The process is divided into several two-input-two-output (TITO) sub-systems. The parameters of the first-order plus dead-time models for the transfer function matrices can be obtained using least squares method. Hence a distributed model predictive contn,ller is designed based on the coupling models of each sub-process. Simulation results on the temperature control of a reheating furnace are given to show the efficiency of the algorithm.展开更多
This paper describes the new method that is introduced into prediction of subsidence using system engineering method with acoustic logging and density logging. According to the result of acoustic logging, the real and...This paper describes the new method that is introduced into prediction of subsidence using system engineering method with acoustic logging and density logging. According to the result of acoustic logging, the real and complex rock beds are divided into a set of different bed groups and the equivalent mechanical model is to be built. Based on the modern control theory,according to the input data (convergence or settlement of the roof) and the output data (surface movement and deformation) of the system, the static parameters of equivalent rock beds can be derived from back calculation using the optimum method. Then the reqression relationship between the dynamic and static parameters can be built. So the prediction of rock and ground movements for other areas in the same district can be done, when using this relationship with the acoustic logging data and density logging data in situ.展开更多
Magnetorheological (MR) Dampers offer rapid variation in damping properties, making them ideal in semi-active control of structures. They potentially offer highly reliable operation and can be viewed as fail safe, i...Magnetorheological (MR) Dampers offer rapid variation in damping properties, making them ideal in semi-active control of structures. They potentially offer highly reliable operation and can be viewed as fail safe, in that in the worst case, they become passive dampers. Perfect understanding of the response is necessary when implementing these in operation in conjunction with a control mechanism. There are many models used to predict the behavior of MR dampers. One of these is the Bouc-Wen model. It is extremely popular as it is numerically tractable, very versatile and can exhibit a wide range of hysteretic behavior. It is necessary to first identify the characteristic parameters of the model before response prediction is possible. However, characteristic parameters identification of the Bouc-Wen model needs an experimental base, which has its own limitations. The extraction of these characteristic parameters by trial and error and optimization techniques leaves significant difference between observed and simulated results. This paper deals with a new approach to extract characteristic parameters for the Bouc-Wen model.展开更多
In this paper, we extend the state-space kriging(SSK) modeling technique presented in a previous work by the authors in order to consider non-autonomous systems. SSK is a data-driven method that computes predictions a...In this paper, we extend the state-space kriging(SSK) modeling technique presented in a previous work by the authors in order to consider non-autonomous systems. SSK is a data-driven method that computes predictions as linear combinations of past outputs. To model the nonlinear dynamics of the system, we propose the kernel-based state-space kriging(K-SSK), a new version of the SSK where kernel functions are used instead of resorting to considerations about the locality of the data. Also, a Kalman filter can be used to improve the predictions at each time step in the case of noisy measurements. A constrained tracking nonlinear model predictive control(NMPC) scheme using the black-box input-output model obtained by means of the K-SSK prediction method is proposed. Finally, a simulation example and a real experiment are provided in order to assess the performance of the proposed controller.展开更多
This paper investigates two noncooperative-game strategies which may be used to represent a human driver's steering control behavior in response to vehicle automated steering intervention.The first strategy,namely...This paper investigates two noncooperative-game strategies which may be used to represent a human driver's steering control behavior in response to vehicle automated steering intervention.The first strategy,namely the Nash strategy is derived based on the assumption that a Nash equilibrium is reached in a noncooperative game of vehicle path-following control involving a driver and a vehicle automated steering controller.The second one,namely the Stackelberg strategy is derived based on the assumption that a Stackelberg equilibrium is reached in a similar context.A simulation study is performed to study the differences between the two proposed noncooperativegame strategies.An experiment using a fixed-base driving simulator is carried out to measure six test drivers'steering behavior in response to vehicle automated steering intervention.The Nash strategy is then fitted to measured driver steering wheel angles following a model identification procedure.Control weight parameters involved in the Nash strategy are identified.It is found that the proposed Nash strategy with the identified control weights is capable of representing the trend of measured driver steering behavior and vehicle lateral responses.It is also found that the proposed Nash strategy is superior to the classic driver steering control strategy which has widely been used for modeling driver steering control over the past.A discussion on improving automated steering control using the gained knowledge of driver noncooperative-game steering control behavior was made.展开更多
Some theory problems affecting parameter estimation are discussed in this paper. Influence and transformation between errors of stochastic and functional models is pointed out as well. For choosing the best adjustment...Some theory problems affecting parameter estimation are discussed in this paper. Influence and transformation between errors of stochastic and functional models is pointed out as well. For choosing the best adjustment model, a formula, which is different from the literatures existing methods, for estimating and identifying the model error, is proposed. On the basis of the proposed formula, an effective approach of selecting the best model of adjustment system is given.展开更多
We proposed a dynamic model identification and design of an H-Infinity (i.e.H) controller using a LightweightPiezo-Composite Actuator (LIPCA).A second-order dynamic model was obtained by using input and output dat...We proposed a dynamic model identification and design of an H-Infinity (i.e.H) controller using a LightweightPiezo-Composite Actuator (LIPCA).A second-order dynamic model was obtained by using input and output data, and applyingan identification algorithm.The identified model coincides well with the real LIPCA.To reduce the resonating mode that istypical of piezoelectric actuators, a notch filter was used.A feedback controller using the Hcontrol scheme was designed basedon the identified dynamic model; thus, the LIPCA can be easily used as an actuator for biomemetic applications such as artificialmuscles or macro/micro positioning in bioengineering.The control algorithm was implemented using a microprocessor, analogfilters, and power amplifying drivers.Our simulation and experimental results demonstrate that the proposed control algorithmworks well in real environment, providing robust performance and stability with uncertain disturbances.展开更多
The present nonlinear model reduction methods unfit the nonlinear benchmark buildings as their vibration equations belong to a non-affine system. Meanwhile, the controllers designed directly by the nonlinear control s...The present nonlinear model reduction methods unfit the nonlinear benchmark buildings as their vibration equations belong to a non-affine system. Meanwhile, the controllers designed directly by the nonlinear control strategy have a high order, and they are difficult to be applied actually. Therefore, a new active vibration control way which fits the nonlinear buildings is proposed. The idea of the proposed way is based on the model identification and structural model linearization, and exerting the control force to the built model according to the force action principle. This proposed way has a better practicability as the built model can be reduced by the balance reduction method based on the empirical Grammian matrix. A three-story benchmark structure is presented and the simulation results illustrate that the proposed method is viable for the civil engineering structures.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
文摘In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.
文摘By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias.
基金supported by the State Key Program of National Natural Science of China(Grant No.60736025)the National Natural Science Foundation of China(Grant No.60905056)the National Basic Research Program of China(973 Program)(Grant No.2009CB72400102)
文摘This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests.
基金supported by the National Security Major Basic Research Project of China (973-61334).
文摘Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(50775028)the Ministry of Science and Technology of China for the 863 High-Tech Scheme(2007AA04Z418)
文摘In order to achieve prediction for vibration of rotating machinery, an accurate finite element (FE) model and an efficient parameter identification method of the rotor system are required. In this research, a test rig is used as a prototype of a rotor system to validate a novel parameter identification technique based on an FE model. Rotor shaft vibration at varying operating speeds is measured and correlated with the FE results. Firstly, the theories of the FE modelling and identification technique are introduced. Then disk unbalance parameter, stiffness and damping coefficients of the bearing supports on the test rig are identified. The calculated responses of the FE model with identified parameters are studied in comparison with the experimental results.
基金Supported by the President Fund of Graduate University, Chinese Academy of Sciences.
文摘A distortion identification technique is presented based on Hilbert-Huang transform to identify distortion model and distortion frequency of distorted real-world image sequences. The distortion model is identified simply based on Hilbert marginal spectral analysis after empirical mode decomposing. And distortion frequency is identified by analyzing the occurrence frequency of instantaneous frequency components of every intrinsic mode functions. Rational digital frequency filter with suitable cutoff frequency is designed to remove undesired fluctuations based on identification results. Experimental results show that this technique can identify distortion model and distortion frequency of displacement sequence accurately and efficiently. Based on identification results, distorted image sequence can be stabilized effectively.
基金Supported by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(2016RCJJ046)the National Basic Research Program of China(2012CB720500)
文摘Data-driven soft sensor is an effective solution to provide rapid and reliable estimations for key quality variables online. The secondary variables affect the primary variable in considerably different speed, and soft sensor systems exhibit multi-dynamic characteristics. Thus, the first contribution is improving the model in the previous study with multi-time-constant. The characteristics-separation-based model will be identified in substep way,and the stochastic Newton recursive(SNR) algorithm is adopted. Considering the dual-rate characteristics of soft sensor systems, the proposed model cannot be identified directly. Thus, two auxiliary models are first proposed to offer the intersample estimations at each update period, based on which the improved algorithm(DAM-SNR) is derived. These two auxiliary models function in switching mechanism which has been illustrated in detail. This algorithm serves for the identification of the proposed model together with the SNR algorithm, and the identification procedure is then presented. Finally, the laboratorial case confirms the effectiveness of the proposed soft sensor model and the algorithms.
基金Supported by the National Natural Science Foundation of China(61573052,61174128)
文摘The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm.
文摘The accurate mathematical models for complicated structures are verydifficult to construct.The work presented here provides an identification method for estimating the mass, damping , and stiffness matrices of linear dynamical systems from incompleteexperimental data. The mass, stiffness, and damping matrices are assumed to be real,symmetric, and positive definite. The partial set of experimental complex eigenvalues and corresponding eigenvectors are given. In the proposed method the least squaresalgorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters. several illustrative examples, are presented to demonstrate the reliability of the proposed method .It is emphasized thatthe mass, damping and stiffness martices can be identified simultaneously.
文摘The accurate mathematical models for complicated structures are very difficult to construct.The work presented here provides an identification method for estimating the mass.damping,and stiffness matrices of linear dynamical systems from incomplete experimental data.The mass,stiffness and damping matrices are assumed to be real,symmetric,and positive definite The partial set of experimental complex eigenvalues and corresponding eigenvectors are given.In the proposed method the least squares algorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters.Seeveral illustative examples,are presented to demonstrate the reliability of the proposed method .It is emphasized that the mass,damping and stiffness matrices can be identified simultaneously.
文摘There is still an obstacle to prevent neural network from wider and more effective applications, i.e., the lack of effective theories of models identification. Based on information theory and its generalization, this paper introduces a universal method to achieve nonlinear models identification. Two key quantities, which are called nonlinear irreducible auto-correlation (NIAC) and generalized nonlinear irreducible auto-correlation (GNIAC), are defined and discussed. NIAC and GNIAC correspond with intrinstic irreducible auto-(dependency) (IAD) and generalized irreducible auto-(dependency) (GIAD) of time series respectively. By investigating the evolving trend of NIAC and GNIAC, the optimal auto-regressive order of nonlinear auto-regressive models could be determined naturally. Subsequently, an efficient algorithm computing NIAC and GNIAC is discussed. Experiments on simulating data sets and typical nonlinear prediction models indicate remarkable correlation between optimal auto-regressive order and the highest order that NIAC-GNIAC have a remarkable non-zero value, therefore demonstrate the validity of the proposal in this paper.
基金国家高技术研究发展计划(863计划),the National Natural Science Foundation of China,教育部新世纪高校优秀人才计划
文摘A new decentralized closcd-loop identification and predictive controller design method for a kind of cascade processes composed of several sub-processes is studied. This kind of cascade processcs has the characteristies of one-way connection. The process is divided into several two-input-two-output (TITO) sub-systems. The parameters of the first-order plus dead-time models for the transfer function matrices can be obtained using least squares method. Hence a distributed model predictive contn,ller is designed based on the coupling models of each sub-process. Simulation results on the temperature control of a reheating furnace are given to show the efficiency of the algorithm.
文摘This paper describes the new method that is introduced into prediction of subsidence using system engineering method with acoustic logging and density logging. According to the result of acoustic logging, the real and complex rock beds are divided into a set of different bed groups and the equivalent mechanical model is to be built. Based on the modern control theory,according to the input data (convergence or settlement of the roof) and the output data (surface movement and deformation) of the system, the static parameters of equivalent rock beds can be derived from back calculation using the optimum method. Then the reqression relationship between the dynamic and static parameters can be built. So the prediction of rock and ground movements for other areas in the same district can be done, when using this relationship with the acoustic logging data and density logging data in situ.
文摘Magnetorheological (MR) Dampers offer rapid variation in damping properties, making them ideal in semi-active control of structures. They potentially offer highly reliable operation and can be viewed as fail safe, in that in the worst case, they become passive dampers. Perfect understanding of the response is necessary when implementing these in operation in conjunction with a control mechanism. There are many models used to predict the behavior of MR dampers. One of these is the Bouc-Wen model. It is extremely popular as it is numerically tractable, very versatile and can exhibit a wide range of hysteretic behavior. It is necessary to first identify the characteristic parameters of the model before response prediction is possible. However, characteristic parameters identification of the Bouc-Wen model needs an experimental base, which has its own limitations. The extraction of these characteristic parameters by trial and error and optimization techniques leaves significant difference between observed and simulated results. This paper deals with a new approach to extract characteristic parameters for the Bouc-Wen model.
基金supported by the Agencia Estatal de Investigación (AEI)-Spain (PID2019-106212RB-C41/AEI/10.13039/501100011033)Junta de Andalucía and FEDER funds (P20_00546)。
文摘In this paper, we extend the state-space kriging(SSK) modeling technique presented in a previous work by the authors in order to consider non-autonomous systems. SSK is a data-driven method that computes predictions as linear combinations of past outputs. To model the nonlinear dynamics of the system, we propose the kernel-based state-space kriging(K-SSK), a new version of the SSK where kernel functions are used instead of resorting to considerations about the locality of the data. Also, a Kalman filter can be used to improve the predictions at each time step in the case of noisy measurements. A constrained tracking nonlinear model predictive control(NMPC) scheme using the black-box input-output model obtained by means of the K-SSK prediction method is proposed. Finally, a simulation example and a real experiment are provided in order to assess the performance of the proposed controller.
文摘This paper investigates two noncooperative-game strategies which may be used to represent a human driver's steering control behavior in response to vehicle automated steering intervention.The first strategy,namely the Nash strategy is derived based on the assumption that a Nash equilibrium is reached in a noncooperative game of vehicle path-following control involving a driver and a vehicle automated steering controller.The second one,namely the Stackelberg strategy is derived based on the assumption that a Stackelberg equilibrium is reached in a similar context.A simulation study is performed to study the differences between the two proposed noncooperativegame strategies.An experiment using a fixed-base driving simulator is carried out to measure six test drivers'steering behavior in response to vehicle automated steering intervention.The Nash strategy is then fitted to measured driver steering wheel angles following a model identification procedure.Control weight parameters involved in the Nash strategy are identified.It is found that the proposed Nash strategy with the identified control weights is capable of representing the trend of measured driver steering behavior and vehicle lateral responses.It is also found that the proposed Nash strategy is superior to the classic driver steering control strategy which has widely been used for modeling driver steering control over the past.A discussion on improving automated steering control using the gained knowledge of driver noncooperative-game steering control behavior was made.
基金Project supported by the Open Research Fund Programof the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, WuhanUniversity (No.905276031-04-10) .
文摘Some theory problems affecting parameter estimation are discussed in this paper. Influence and transformation between errors of stochastic and functional models is pointed out as well. For choosing the best adjustment model, a formula, which is different from the literatures existing methods, for estimating and identifying the model error, is proposed. On the basis of the proposed formula, an effective approach of selecting the best model of adjustment system is given.
基金supported by the Korea Research Foundation Grant(KRF-2006-005-J03303)
文摘We proposed a dynamic model identification and design of an H-Infinity (i.e.H) controller using a LightweightPiezo-Composite Actuator (LIPCA).A second-order dynamic model was obtained by using input and output data, and applyingan identification algorithm.The identified model coincides well with the real LIPCA.To reduce the resonating mode that istypical of piezoelectric actuators, a notch filter was used.A feedback controller using the Hcontrol scheme was designed basedon the identified dynamic model; thus, the LIPCA can be easily used as an actuator for biomemetic applications such as artificialmuscles or macro/micro positioning in bioengineering.The control algorithm was implemented using a microprocessor, analogfilters, and power amplifying drivers.Our simulation and experimental results demonstrate that the proposed control algorithmworks well in real environment, providing robust performance and stability with uncertain disturbances.
基金Project supported by the Natural Science Foundation of Jiangsu Province of China (No.BK2003083)the Second Batch of "Six Talent Peak" of Jiangsu Province
文摘The present nonlinear model reduction methods unfit the nonlinear benchmark buildings as their vibration equations belong to a non-affine system. Meanwhile, the controllers designed directly by the nonlinear control strategy have a high order, and they are difficult to be applied actually. Therefore, a new active vibration control way which fits the nonlinear buildings is proposed. The idea of the proposed way is based on the model identification and structural model linearization, and exerting the control force to the built model according to the force action principle. This proposed way has a better practicability as the built model can be reduced by the balance reduction method based on the empirical Grammian matrix. A three-story benchmark structure is presented and the simulation results illustrate that the proposed method is viable for the civil engineering structures.