期刊文献+
共找到151,690篇文章
< 1 2 250 >
每页显示 20 50 100
Identification of time-varying system and energy-based optimization of adaptive control in seismically excited structure
1
作者 Elham Aghabarari Fereidoun Amini Pedram Ghaderi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期227-240,共14页
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ... The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems. 展开更多
关键词 integrated online identification time-varying systems structural energy multiple forgetting factor recursive least squares optimal simple adaptive control algorithm
下载PDF
Data-Driven Model Identification and Control of the Inertial Systems
2
作者 Irina Cojuhari 《Intelligent Control and Automation》 2023年第1期1-18,共18页
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy... In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation. 展开更多
关键词 Data-Driven Model identification controller Tuning Undamped Transient Response Closed-Loop system identification PID controller
下载PDF
Quaternion-Based Adaptive Trajectory Tracking Control of a Rotor-Missile with Unknown Parameters Identification
3
作者 Jie Zhao Zhongjiao Shi +1 位作者 Yuchen Wang Wei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期375-386,共12页
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta... This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations. 展开更多
关键词 Rotor-missile Adaptive control Parameter identification Quaternion control
下载PDF
Finite-time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems With Non-Strict Feedback Based on a Neural Network Observer
4
作者 Chi Ma Dianbiao Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1039-1050,共12页
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli... This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. 展开更多
关键词 Finite-time control multi-agent systems neural network prescribed performance control time-varying formation control
下载PDF
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
5
作者 Yunfeng Hu Chong Zhang +4 位作者 Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期344-361,共18页
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ... Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process. 展开更多
关键词 Adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems
下载PDF
Control Strategies for Digital Twin Systems
6
作者 Guo-Ping Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期170-180,共11页
With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies ... With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples. 展开更多
关键词 Digital twin control systems fault tolerant control model tracking performance prediction performance retention
下载PDF
Dynamic Constraint-Driven Event-Triggered Control of Strict-Feedback Systems Without Max/Min Values on Irregular Constraints
7
作者 Zhuwu Shao Yujuan Wang +1 位作者 Zeqiang Li Yongduan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期569-580,共12页
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu... This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method. 展开更多
关键词 Adaptive control dynamic constraint-driven event-triggered control irregular output constraints nonlinear strict-feed-back systems
下载PDF
Observer-based dynamic event-triggered control for distributed parameter systems over mobile sensor-plus-actuator networks
8
作者 穆文英 庄波 邱芳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期237-243,共7页
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov... We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance. 展开更多
关键词 distributed parameter systems event-triggered control mobile sensors mobile actuators
下载PDF
Reinforcement learning based adaptive control for uncertain mechanical systems with asymptotic tracking
9
作者 Xiang-long Liang Zhi-kai Yao +1 位作者 Yao-wen Ge Jian-yong Yao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期19-28,共10页
This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg... This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach. 展开更多
关键词 Adaptive control Reinforcement learning Uncertain mechanical systems Asymptotic tracking
下载PDF
A new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning
10
作者 Wendi Chen Qinglai Wei 《Journal of Automation and Intelligence》 2024年第1期34-39,共6页
In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied sy... In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy. 展开更多
关键词 Nonlinear systems Reinforcement learning Optimal control Backstepping method
下载PDF
System Identification and Parameter Self-Tuning Controller on Deep-Sea Mining Vehicle
11
作者 WENG Qi-wang YANG Jian-min +2 位作者 LIANG Qiong-wen MAO Jing-hang GUO Xiao-xian 《China Ocean Engineering》 SCIE EI CSCD 2023年第1期53-61,共9页
System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the... System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the system identification algorithm, recursive least square method with instrumental variables(IV-RLS), is tailored to model ‘Pioneer I’, a deep-sea mining vehicle which recently completed a 1305-meter-deep sea trial in the Xisha area of the South China Sea in August, 2021. The algorithm operates on the sensor data collected from the trial to obtain the vehicle’s kinematic model and accordingly design the parameter self-tuning controller. The performances demonstrate the accuracy of the model, and prove its generalization capability. With this model, the optimal controller has been designed, the control parameters have been self-tuned, and the response time and robustness of the system have been optimized,which validates the high efficiency on digital modelling for precision control of deep-sea mining vehicles. 展开更多
关键词 deep-sea mining system identification parameter self-tuning controller digital modeling
下载PDF
Identification and PID Control for a Class of Delay Fractional-order Systems 被引量:6
12
作者 Zhuoyun Nie Qingguo Wang +1 位作者 Ruijuan Liu Yonghong Lan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期463-476,共14页
In this paper,a new model identification method is developed for a class of delay fractional-order system based on the process step response.Four characteristic functions are defined to characterize the features of th... In this paper,a new model identification method is developed for a class of delay fractional-order system based on the process step response.Four characteristic functions are defined to characterize the features of the normalized fractionalorder model.Based on the time scaling technology,two identification schemes are proposed for parameters' estimation.The scheme one utilizes three exact points on the step response of the process to calculate model parameters directly.The other scheme employs optimal searching method to adjust the fractional order for the best model identification.The proposed two identification schemes are both applicable to any stable complex process,such as higher-order,under-damped/over-damped,and minimum-phase/nonminimum-phase processes.Furthermore,an optimal PID tuning method is proposed for the delay fractionalorder systems.The requirements on the stability margins and the negative feedback are cast as real part constraints(RPC)and imaginary part constraints(IPC).The constraints are implemented by trigonometric inequalities on the phase variable,and the optimal PID controller is obtained by the minimization of the integral of time absolute error(ITAE) index.Identification and control of a Titanium billet heating process is given for the illustration. 展开更多
关键词 Fractional-order system time delay identification PID control Titanium billet heating furnace
下载PDF
Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control 被引量:1
13
作者 刘丹峰 吴召艳 叶青伶 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期183-190,共8页
In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is investigated. Both the topological structure and the system parameters can be unknown and need to be ide... In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is investigated. Both the topological structure and the system parameters can be unknown and need to be identified. Based on impulsive stability theory and the Lyapunov function method, an impulsive control scheme combined with an adaptive strategy is adopted to design effective and universal network estimators. The restriction on the impulsive interval is relaxed by adopting an adaptive strategy. Further, the proposed method can monitor the online switching topology effectively.Several numerical simulations are provided to illustrate the effectiveness of the theoretical results. 展开更多
关键词 自适应策略 网络开关 混沌系统 结构鉴定 脉冲控制 LYAPUNOV函数方法 拓扑结构 稳定性理论
下载PDF
An Approach to Polynomial NARX/NARMAX Systems Identification in a Closed-loop with Variable Structure Control 被引量:6
14
作者 O.M.Mohamed Vall R.M'hiri 《International Journal of Automation and computing》 EI 2008年第3期313-318,共6页
Many physical processes have nonlinear behavior which can be well represented by a polynomial NARX or NARMAX model.The identification of such models has been widely explored in literature.The majority of these approac... Many physical processes have nonlinear behavior which can be well represented by a polynomial NARX or NARMAX model.The identification of such models has been widely explored in literature.The majority of these approaches are for the open-loop identification.However,for reasons such as safety and production restrictions,open-loop identification cannot always be done.In such cases,closed-loop identification is necessary.This paper presents a two-step approach to closed-loop identification of the polynomial NARX/NARMAX systems with variable structure control(VSC).First,a genetic algorithm(GA) is used to maximize the similarity of VSC signal to white noise by tuning the switching function parameters.Second,the system is simulated again and its parameters are estimated by an algorithm of the least square(LS) family.Finally,simulation examples are given to show the validity of the proposed approach. 展开更多
关键词 变结构控制 遗传算法 NARX/NARMAX模型 闭环系统
下载PDF
Parameter Identification and Controller Design for the Velocity Loop in Motion Control Systems
15
作者 Reimund Neugebauer Stefan Hofmann +1 位作者 Arvid Hellmich Holger Schlegel 《Intelligent Control and Automation》 2011年第3期251-257,共7页
Today the controller commissioning of industrial used servo drives is usually realized in the frequency domain with the open-loop frequency response. In contrast to that the cascaded system of position loop, velocity ... Today the controller commissioning of industrial used servo drives is usually realized in the frequency domain with the open-loop frequency response. In contrast to that the cascaded system of position loop, velocity loop and current loop, which is standard in industrial motion controllers, is described in literature by using parametric models. Several tuning rules in the time domain are applicable on the basis of these parametric descriptions. In order to benefit from the variety of tuning rules an identification method in the time domain is required. The paper presents a method for the identification of plant parameters in the time domain. The approach is based on the auto relay feedback experiment by ?str?m/ H?gglund and a modified technique of gradual pole compensation. The paper presents the theoretical description as well as the implementtation as an automatic application in the motion control system SIMOTION. The identification results as well as the achievable performance on a test rig with a PI velocity controller will be presented. 展开更多
关键词 identification PARAMETRIC MODELS controlLER Design MOTION control
下载PDF
Identification and Adaptive Control of Dynamic Nonlinear Systems Using Sigmoid Diagonal Recurrent Neural Network
16
作者 Tarek Aboueldahab Mahumod Fakhreldin 《Intelligent Control and Automation》 2011年第3期176-181,共6页
The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done by addi... The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done by adding a sigmoid weight victor in the hidden layer neurons to adapt of the shape of the sigmoid function making their outputs not restricted to the sigmoid function output. Also, we introduce a dynamic back propagation learning algorithm to train the new proposed network parameters. The simulation results showed that the (SDRNN) is more efficient and accurate than the DRNN in both the identification and adaptive control of nonlinear dynamical systems. 展开更多
关键词 SIGMOID DIAGONAL RECURRENT Neural Networks DYNAMIC BACK Propagation DYNAMIC Nonlinear systems Adaptive control
下载PDF
Synchronization and Parameters Identification of Chaotic Systems via Adaptive Control 被引量:2
17
作者 王中生 廖晓昕 《Journal of Electronic Science and Technology of China》 2005年第1期64-67,共4页
Based on Lyapunov stability theory, a novel adaptive controller is designed for a class of chaotic systems .The parameters identification and synchronization of chaotic systems can be carried out simultaneously. The c... Based on Lyapunov stability theory, a novel adaptive controller is designed for a class of chaotic systems .The parameters identification and synchronization of chaotic systems can be carried out simultaneously. The controller and the updating law of parameters identification are directly constructed by analytic formula. Simulation results with Chen’s system and R?ssler system show the effectiveness of the proposed controller. 展开更多
关键词 参数辨别 同步 自适应控制 混沌系统
下载PDF
Time-delay identification for linear controlled systems
18
作者 Yiqiang Sun Hanwen Song Jian Xu 《Theoretical & Applied Mechanics Letters》 CAS 2013年第6期51-54,共4页
A new approach for time-delay identifcation is proposed in linear controlled systems.The delay is derived from the control loop in the system.The frequency-response function of the system is presented in terms of the ... A new approach for time-delay identifcation is proposed in linear controlled systems.The delay is derived from the control loop in the system.The frequency-response function of the system is presented in terms of the impedance matrix.It is proved that the inverse form of the function may be expressed in the harmonic function,which is used to ft those data from the experiment.As an example,an isolator with the delayed feedback control is schemed to acquire such data.Using least square algorithm yields that the identifed delay can reach any required accuracy. 展开更多
关键词 线性控制系统 频率响应函数 延迟反馈控制 辨识 时滞 最小二乘法 控制回路 阻抗矩阵
下载PDF
Analysis and Design of Time-Delay Impulsive Systems Subject to Actuator Saturation
19
作者 Chenhong Zhu Xiuping Han Xiaodi Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期196-204,共9页
This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is s... This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results. 展开更多
关键词 Delayed impulses impulsive control impulsive disturbance nonlinear systems SATURATION
下载PDF
Adaptive Optimal Output Regulation of Interconnected Singularly Perturbed Systems With Application to Power Systems
20
作者 Jianguo Zhao Chunyu Yang +2 位作者 Weinan Gao Linna Zhou Xiaomin Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期595-607,共13页
This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl... This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system. 展开更多
关键词 Adaptive optimal control decentralized control output regulation reinforcement learning(RL) singularly perturbed systems(SPSs)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部