Relight of jet engines at high altitude is difficult due to the relatively low pressure and temperature of inlet air.The penetration of initial flame kernel affects the ignition probability in the turbine engine combu...Relight of jet engines at high altitude is difficult due to the relatively low pressure and temperature of inlet air.The penetration of initial flame kernel affects the ignition probability in the turbine engine combustor greatly.In order to achieve successful ignition at high altitude,a deeper penetration of initial flame kernel should be generated.In this study,a Gliding Arc Plasma Jet Igniter(GAPJI)is designed to induce initial flame kernel with deeper penetration to achieve successful ignition at high altitude.The ignition performance of the GAPJI was demonstrated in a model combustor.It was found that GAPJI can generate plasma with deeper penetration up to 30.5 mm than spark igniter with 22.1 mm.The discharge power of GAPJI was positively correlated with flow rate of the carrier gas,approaching 200 W in average.Ignition experiments show that GAPJI has the advantage of extending the lean ignition limit.With GAPJI,the lean ignition limit of the combustor is 0.02 at 0 km,which is 55.6%less than that with spark igniter(0.045).The evolution of flame morphology was observed to explore the development of the flame kernel.It is shown that the advantage of a high penetration and continuous releasing energy can accelerate the ignition process and enhance combustion.展开更多
Natural gas engines have become increasingly important in transportation applications,especially in the commercial vehicle sector.With increasing demand for high efficiency and low emissions,new technologies must be e...Natural gas engines have become increasingly important in transportation applications,especially in the commercial vehicle sector.With increasing demand for high efficiency and low emissions,new technologies must be explored to overcome the performance limitations of natural gas engines such as limits on lean or dilute combustion,unstable combustion,low burning velocity,and high emissions of CH_(4) and NO_(x).This paper reviews the progress of research on natural gas engines over recent decades,concentrating on ignition and combustion systems,mixture preparation,the development of different combustion modes,and after-treatment strategies.First,the features,advantages,and disadvantages of natural gas engines are introduced,following which the development of advanced ignition systems,organization of highly turbulent flows,and the preparation of high-reactivity mixtures in spark ignition engines are discussed with a focus on pre-chamber jet ignition,combustion chamber design,and H_(2)-enriched natural gas combustion.Third,the progress in natural gas dual-fuel engines is highlighted,including the exploration of new combustion modes,the development of novel pilot fuels,and the optimization of combustion control strategies.The fourth section discusses after-treatment systems for natural gas engines operating in different combustion modes.Finally,conclusions and future trends in the development of high-efficiency and clean combus-tion in natural gas engines are summarized.展开更多
基金co-supported by the National Natural Science Foundation of China (Nos. 51807204 and 91941301)the Postdoctoral Research Foundation of China (No. 2019M663719)the National Science and Technology Major Project, China (No. 2017-Ⅲ-0007-0033)
文摘Relight of jet engines at high altitude is difficult due to the relatively low pressure and temperature of inlet air.The penetration of initial flame kernel affects the ignition probability in the turbine engine combustor greatly.In order to achieve successful ignition at high altitude,a deeper penetration of initial flame kernel should be generated.In this study,a Gliding Arc Plasma Jet Igniter(GAPJI)is designed to induce initial flame kernel with deeper penetration to achieve successful ignition at high altitude.The ignition performance of the GAPJI was demonstrated in a model combustor.It was found that GAPJI can generate plasma with deeper penetration up to 30.5 mm than spark igniter with 22.1 mm.The discharge power of GAPJI was positively correlated with flow rate of the carrier gas,approaching 200 W in average.Ignition experiments show that GAPJI has the advantage of extending the lean ignition limit.With GAPJI,the lean ignition limit of the combustor is 0.02 at 0 km,which is 55.6%less than that with spark igniter(0.045).The evolution of flame morphology was observed to explore the development of the flame kernel.It is shown that the advantage of a high penetration and continuous releasing energy can accelerate the ignition process and enhance combustion.
基金This work is supported by the Key Program of National Natural Science Foundation of China(21761142012)the National Key Research and Development Program of China[2016YFB0101402][2017YFE0102800].
文摘Natural gas engines have become increasingly important in transportation applications,especially in the commercial vehicle sector.With increasing demand for high efficiency and low emissions,new technologies must be explored to overcome the performance limitations of natural gas engines such as limits on lean or dilute combustion,unstable combustion,low burning velocity,and high emissions of CH_(4) and NO_(x).This paper reviews the progress of research on natural gas engines over recent decades,concentrating on ignition and combustion systems,mixture preparation,the development of different combustion modes,and after-treatment strategies.First,the features,advantages,and disadvantages of natural gas engines are introduced,following which the development of advanced ignition systems,organization of highly turbulent flows,and the preparation of high-reactivity mixtures in spark ignition engines are discussed with a focus on pre-chamber jet ignition,combustion chamber design,and H_(2)-enriched natural gas combustion.Third,the progress in natural gas dual-fuel engines is highlighted,including the exploration of new combustion modes,the development of novel pilot fuels,and the optimization of combustion control strategies.The fourth section discusses after-treatment systems for natural gas engines operating in different combustion modes.Finally,conclusions and future trends in the development of high-efficiency and clean combus-tion in natural gas engines are summarized.