This paper concerns the A smooth regularization method for linear ill posed equations in the presence of perturbed operators and noisy data. The semi and full a posteriori Morozov discrepancy principles for...This paper concerns the A smooth regularization method for linear ill posed equations in the presence of perturbed operators and noisy data. The semi and full a posteriori Morozov discrepancy principles for choosing the regularization parameter are proposed, which lead to satisfactory results.展开更多
In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. ...In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. Using general HSlder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.展开更多
In this paper, the author applied an implicit iterative method to solve linear ill posed equations with both perturbed operators and perturbed data. After having carefully estimated some terms involved, a satisfactor...In this paper, the author applied an implicit iterative method to solve linear ill posed equations with both perturbed operators and perturbed data. After having carefully estimated some terms involved, a satisfactory order of convergence rate was derived.展开更多
This paper discusses the regularization solution of ill posed equation with the help of its spectral decomposition formula. It shows that regularization can filter the influence of the high frequency errors which are ...This paper discusses the regularization solution of ill posed equation with the help of its spectral decomposition formula. It shows that regularization can filter the influence of the high frequency errors which are very sensitive to the parameters to be estimated, and gives a complete derivation of the spectral decomposition formulae of least squares adjustment, rank deficient adjustment and the regularization solution of ill posed equation. It also shows the equivalence between the trace of the mean squares error and the expectation of the secondnorm of estimated parameter’s total error.展开更多
In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is...In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.展开更多
In this article, we consider the Cauchy problems for the modified Kawahara equationδtu+μδx(u3)+αδx5u+βδx3u+γδxu=0 and the Kaup-Kupershmidt equation δtu+μuδx2u+αδx5u+βδx3u+βδx3u+γδxu=0Usi...In this article, we consider the Cauchy problems for the modified Kawahara equationδtu+μδx(u3)+αδx5u+βδx3u+γδxu=0 and the Kaup-Kupershmidt equation δtu+μuδx2u+αδx5u+βδx3u+βδx3u+γδxu=0Using the general well-posedness principle introduced by I. Bejenaru and T. Tao, we prove 1 that the modified Kawahara equation is ill-posed for the initial data in H8 (It) with s 〈 - and that the Kaup-Kupershmidt equation is ill-posed for the initial data in HS(It) with s〈0.展开更多
The nonlinear D-S equations on R^d, with general power nonlinearity and with both the focusing and defocusing signs, are proved to be ill-posed in the Sobolev space H^s whenever the exponent s is lower than that predi...The nonlinear D-S equations on R^d, with general power nonlinearity and with both the focusing and defocusing signs, are proved to be ill-posed in the Sobolev space H^s whenever the exponent s is lower than that predicted by scaling or Galilean invariance, or when the regularity is too low to support distributional solutions. Authors analyze a class of solutions for which the zero-dispersion limit provides good approximations.展开更多
It is proved that the ill-posed initial value problem of the Euler equations for compressible adiabatic inviscid fluid flow can be only formally solved. The necessary and sufficient conditions for existence of formal ...It is proved that the ill-posed initial value problem of the Euler equations for compressible adiabatic inviscid fluid flow can be only formally solved. The necessary and sufficient conditions for existence of formal solution of some representative ill-posedness initial-boundary value problem are presented. Finally, an example is also given.展开更多
Two dynamical system methods are studied for solving linear ill-posed problems with both operator and right-hand nonexact. The methods solve a Cauchy problem for a linear operator equation which possesses a global sol...Two dynamical system methods are studied for solving linear ill-posed problems with both operator and right-hand nonexact. The methods solve a Cauchy problem for a linear operator equation which possesses a global solution. The limit of the global solution at infinity solves the original linear equation. Moreover, we also present a convergent iterative process for solving the Cauchy problem.展开更多
We study the three-dimensional many-particle quantum dynamics in mean-field set-ting.We forge together the hierarchy method and the modulated energy method.We prove rigorously that the compressible Euler equation is t...We study the three-dimensional many-particle quantum dynamics in mean-field set-ting.We forge together the hierarchy method and the modulated energy method.We prove rigorously that the compressible Euler equation is the limit as the particle num-ber tends to infinity and the Planck’s constant tends to zero.We improve the previous sufficient small time hierarchy argument to any finite time via a new iteration scheme and Strichartz bounds first raised by Klainerman and Machedon in this context.We establish strong and quantitative microscopic to macroscopic convergence of mass and momentum densities up to the 1st blow up time of the limiting Euler equation.We justify that the macroscopic pressure emerges from the space-time averages of micro-scopic interactions via the Strichartz-type bounds.We have hence found a physical meaning for Strichartz-type bounds.展开更多
To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection techniq...To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).展开更多
Affected by the insufficient information of single baseline observation data,the three-stage method assumes the Ground-to-Volume Ratio(GVR)to be zero so as to invert the vegetation height.However,this assumption intro...Affected by the insufficient information of single baseline observation data,the three-stage method assumes the Ground-to-Volume Ratio(GVR)to be zero so as to invert the vegetation height.However,this assumption introduces much biases into the parameter estimates which greatly limits the accuracy of the vegetation height inversion.Multi-baseline observation can provide redundant information and is helpful for the inversion of GVR.Nevertheless,the similar model parameter values in a multi-baseline model often lead to ill-posed problems and reduce the inversion accuracy of conventional algorithm.To this end,we propose a new step-by-step inversion method applied to the multi-baseline observations.Firstly,an adjustment inversion model is constructed by using multi-baseline volume scattering dominant polarization data,and the regularized estimates of model parameters are obtained by regularization method.Then,the reliable estimates of GVR are determined by the MSE(mean square error)analysis of each regularized parameter estimation.Secondly,the estimated GVR is used to extracts the pure volume coherence,and then the vegetation height parameter is inverted from the pure volume coherence by least squares estimation.The experimental results show that the new method can improve the vegetation height inversion result effectively.The inversion accuracy is improved by 26%with respect to the three-stage method and the conventional solution of multi-baseline.All of these have demonstrated the feasibility and effectiveness of the new method.展开更多
We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de...We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.展开更多
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based...Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all pl...In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls.However,in industrial plasma reactors for semiconductor manufacturing,the plasma is partially confined by internal reactor structures.We predict the effect of the open boundary area(A′_(L,eff))and ion escape velocity(u_(i))on electron temperature and density by developing new particle and energy balance equations.Theoretically,we found a low ion escape velocity(u_(i)/u_(B)≈0.2)and high open boundary area(A′_(L,eff)/A_(T,eff)≈0.6)to result in an approximately 38%increase in electron density and an 8%decrease in electron temperature compared to values in a fully bounded reactor.Additionally,we suggest that the velocity of ions passing through the open boundary should exceedω_(pi)λ_(De)under the condition E^(2)_(0)?(Φ/λ_(De))^(2).展开更多
By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by si...By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.展开更多
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho...In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.展开更多
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio...This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.展开更多
This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss...This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).展开更多
文摘This paper concerns the A smooth regularization method for linear ill posed equations in the presence of perturbed operators and noisy data. The semi and full a posteriori Morozov discrepancy principles for choosing the regularization parameter are proposed, which lead to satisfactory results.
基金National Institute of Technology Karnataka, India, for the financial support
文摘In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. Using general HSlder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.
文摘In this paper, the author applied an implicit iterative method to solve linear ill posed equations with both perturbed operators and perturbed data. After having carefully estimated some terms involved, a satisfactory order of convergence rate was derived.
文摘This paper discusses the regularization solution of ill posed equation with the help of its spectral decomposition formula. It shows that regularization can filter the influence of the high frequency errors which are very sensitive to the parameters to be estimated, and gives a complete derivation of the spectral decomposition formulae of least squares adjustment, rank deficient adjustment and the regularization solution of ill posed equation. It also shows the equivalence between the trace of the mean squares error and the expectation of the secondnorm of estimated parameter’s total error.
文摘In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.
基金supported by NNSFC under grant numbers 10771074 and 11171116supported in part by NNSFC under grant number 10801055+1 种基金the Doctoral Program of NEM of China under grant number 200805611026supported in part by the Fundamental Research Funds for the Central Universities under the grant number 2012ZZ0072
文摘In this article, we consider the Cauchy problems for the modified Kawahara equationδtu+μδx(u3)+αδx5u+βδx3u+γδxu=0 and the Kaup-Kupershmidt equation δtu+μuδx2u+αδx5u+βδx3u+βδx3u+γδxu=0Using the general well-posedness principle introduced by I. Bejenaru and T. Tao, we prove 1 that the modified Kawahara equation is ill-posed for the initial data in H8 (It) with s 〈 - and that the Kaup-Kupershmidt equation is ill-posed for the initial data in HS(It) with s〈0.
基金supported by the Science Foundation of Jiangsu University (07JDG038)
文摘The nonlinear D-S equations on R^d, with general power nonlinearity and with both the focusing and defocusing signs, are proved to be ill-posed in the Sobolev space H^s whenever the exponent s is lower than that predicted by scaling or Galilean invariance, or when the regularity is too low to support distributional solutions. Authors analyze a class of solutions for which the zero-dispersion limit provides good approximations.
基金Project supported by the National Natural Science Foundation of China (Major Program of the Tenth Five-Year Plan) (Grant No,90411006)
文摘It is proved that the ill-posed initial value problem of the Euler equations for compressible adiabatic inviscid fluid flow can be only formally solved. The necessary and sufficient conditions for existence of formal solution of some representative ill-posedness initial-boundary value problem are presented. Finally, an example is also given.
基金Research was supported by the Jiang Xi Provincial Natural Science Foundation of China under Grant 0611005.
文摘Two dynamical system methods are studied for solving linear ill-posed problems with both operator and right-hand nonexact. The methods solve a Cauchy problem for a linear operator equation which possesses a global solution. The limit of the global solution at infinity solves the original linear equation. Moreover, we also present a convergent iterative process for solving the Cauchy problem.
基金X.Chen was supported in part by NSF grant DMS-2005469 and a Simons fellowship numbered 916862S.Shen was supported in part by the Postdoctoral Science Foundation of China under Grant 2022M720263Z.Zhang was supported in part by NSF of China under Grant 12171010 and 12288101.
文摘We study the three-dimensional many-particle quantum dynamics in mean-field set-ting.We forge together the hierarchy method and the modulated energy method.We prove rigorously that the compressible Euler equation is the limit as the particle num-ber tends to infinity and the Planck’s constant tends to zero.We improve the previous sufficient small time hierarchy argument to any finite time via a new iteration scheme and Strichartz bounds first raised by Klainerman and Machedon in this context.We establish strong and quantitative microscopic to macroscopic convergence of mass and momentum densities up to the 1st blow up time of the limiting Euler equation.We justify that the macroscopic pressure emerges from the space-time averages of micro-scopic interactions via the Strichartz-type bounds.We have hence found a physical meaning for Strichartz-type bounds.
基金supported by the the National Science and Technology Council(Grant Number:NSTC 112-2221-E239-022).
文摘To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).
基金National Natural Science Foundation of China(No.42104025)China Postdoctoral Science Foundation(No.2021M702509)+3 种基金Natural Resources Sciences and Technology Project of Hunan Province(No.2022-07)Surveying and Mapping Basic Research Foundation of Key Laboratory of Geospace Environment and Geodesy,Ministry of Education(No.20-01-04)Natural Science Foundation of Hunan Province(No.2024JJ5144)Open Fund of Hunan International Scientific and Technological Innovation Cooperation Base of Advanced Construction and Maintenance Technology of Highway(Changsha University of Science&Technology,No.kfj190805).
文摘Affected by the insufficient information of single baseline observation data,the three-stage method assumes the Ground-to-Volume Ratio(GVR)to be zero so as to invert the vegetation height.However,this assumption introduces much biases into the parameter estimates which greatly limits the accuracy of the vegetation height inversion.Multi-baseline observation can provide redundant information and is helpful for the inversion of GVR.Nevertheless,the similar model parameter values in a multi-baseline model often lead to ill-posed problems and reduce the inversion accuracy of conventional algorithm.To this end,we propose a new step-by-step inversion method applied to the multi-baseline observations.Firstly,an adjustment inversion model is constructed by using multi-baseline volume scattering dominant polarization data,and the regularized estimates of model parameters are obtained by regularization method.Then,the reliable estimates of GVR are determined by the MSE(mean square error)analysis of each regularized parameter estimation.Secondly,the estimated GVR is used to extracts the pure volume coherence,and then the vegetation height parameter is inverted from the pure volume coherence by least squares estimation.The experimental results show that the new method can improve the vegetation height inversion result effectively.The inversion accuracy is improved by 26%with respect to the three-stage method and the conventional solution of multi-baseline.All of these have demonstrated the feasibility and effectiveness of the new method.
文摘We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11931017 and 12071447)。
文摘Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
文摘In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls.However,in industrial plasma reactors for semiconductor manufacturing,the plasma is partially confined by internal reactor structures.We predict the effect of the open boundary area(A′_(L,eff))and ion escape velocity(u_(i))on electron temperature and density by developing new particle and energy balance equations.Theoretically,we found a low ion escape velocity(u_(i)/u_(B)≈0.2)and high open boundary area(A′_(L,eff)/A_(T,eff)≈0.6)to result in an approximately 38%increase in electron density and an 8%decrease in electron temperature compared to values in a fully bounded reactor.Additionally,we suggest that the velocity of ions passing through the open boundary should exceedω_(pi)λ_(De)under the condition E^(2)_(0)?(Φ/λ_(De))^(2).
基金supported by the National Natural Science Foundation of China(Grant Nos.12175111 and 12235007)the K.C.Wong Magna Fund in Ningbo University。
文摘By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.
文摘In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.
文摘This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.
基金supported by National Natural Science Foundation of China(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)。
文摘This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).