期刊文献+
共找到116,926篇文章
< 1 2 250 >
每页显示 20 50 100
A-Smooth Regularization for Ill-Posed Equations with Perturbed Operators and Noisy Data 被引量:1
1
作者 张宁 贺国强 《Journal of Shanghai University(English Edition)》 CAS 2003年第1期35-40,共6页
This paper concerns the A smooth regularization method for linear ill posed equations in the presence of perturbed operators and noisy data. The semi and full a posteriori Morozov discrepancy principles for... This paper concerns the A smooth regularization method for linear ill posed equations in the presence of perturbed operators and noisy data. The semi and full a posteriori Morozov discrepancy principles for choosing the regularization parameter are proposed, which lead to satisfactory results. 展开更多
关键词 ill posed equations A smooth regularization Morozov discrepancy principle convergence rate.
下载PDF
LAVRENTIEV'S REGULARIZATION METHOD FOR NONLINEAR ILL-POSED EQUATIONS IN BANACH SPACES
2
作者 Santhosh GEORGE C.D.SREEDEEP 《Acta Mathematica Scientia》 SCIE CSCD 2018年第1期303-314,共12页
In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. ... In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. Using general HSlder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter. 展开更多
关键词 nonlinear ill-posed problem Banach space Lavrentiev regularization m-accretive mappings adaptive parameter choice strategy
下载PDF
Implicit Iterative Method for Ill-Posed Equations with Perturbed Operators and Data
3
作者 HE Guo qiang College of Sciences, Shanghai University, Shanghai 200436, China 《Advances in Manufacturing》 2000年第2期96-100,共5页
In this paper, the author applied an implicit iterative method to solve linear ill posed equations with both perturbed operators and perturbed data. After having carefully estimated some terms involved, a satisfactor... In this paper, the author applied an implicit iterative method to solve linear ill posed equations with both perturbed operators and perturbed data. After having carefully estimated some terms involved, a satisfactory order of convergence rate was derived. 展开更多
关键词 ill posed equations implicit iterative method convergence rates
下载PDF
ITERATIVE REGULARIZATION METHODS FOR NONLINEAR ILL-POSED OPERATOR EQUATIONS WITH M-ACCRETIVE MAPPINGS IN BANACH SPACES 被引量:2
4
作者 Ioannis K.ARGYROS Santhosh GEORGE 《Acta Mathematica Scientia》 SCIE CSCD 2015年第6期1318-1324,共7页
In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is... In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping. 展开更多
关键词 nonlinear ill-posed equations iterative regularization m-accretive operator Newton type method
下载PDF
Optimal Shape Factor and Fictitious Radius in the MQ-RBF:Solving Ill-Posed Laplacian Problems
5
作者 Chein-Shan Liu Chung-Lun Kuo Chih-Wen Chang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3189-3208,共20页
To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection techniq... To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11). 展开更多
关键词 Laplace equation nonharmonic boundary value problem ill-posed problem maximal projection optimal shape factor and fictitious radius optimal MQ-RBF optimal polynomial method
下载PDF
A Multi-Baseline PolInSAR Forest Height Inversion Method Taking into Account the Model Ill-posed Problem
6
作者 LIN Dongfang ZHU Jianjun +4 位作者 LI Zhiwei FU Haiqiang LIANG Ji ZHOU Fangbin ZHANG Bing 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第3期42-56,共15页
Affected by the insufficient information of single baseline observation data,the three-stage method assumes the Ground-to-Volume Ratio(GVR)to be zero so as to invert the vegetation height.However,this assumption intro... Affected by the insufficient information of single baseline observation data,the three-stage method assumes the Ground-to-Volume Ratio(GVR)to be zero so as to invert the vegetation height.However,this assumption introduces much biases into the parameter estimates which greatly limits the accuracy of the vegetation height inversion.Multi-baseline observation can provide redundant information and is helpful for the inversion of GVR.Nevertheless,the similar model parameter values in a multi-baseline model often lead to ill-posed problems and reduce the inversion accuracy of conventional algorithm.To this end,we propose a new step-by-step inversion method applied to the multi-baseline observations.Firstly,an adjustment inversion model is constructed by using multi-baseline volume scattering dominant polarization data,and the regularized estimates of model parameters are obtained by regularization method.Then,the reliable estimates of GVR are determined by the MSE(mean square error)analysis of each regularized parameter estimation.Secondly,the estimated GVR is used to extracts the pure volume coherence,and then the vegetation height parameter is inverted from the pure volume coherence by least squares estimation.The experimental results show that the new method can improve the vegetation height inversion result effectively.The inversion accuracy is improved by 26%with respect to the three-stage method and the conventional solution of multi-baseline.All of these have demonstrated the feasibility and effectiveness of the new method. 展开更多
关键词 multi-baseline vegetation height GVR POLINSAR ill-posed problem
下载PDF
Some Modified Equations of the Sine-Hilbert Type
7
作者 闫铃娟 刘亚杰 胡星标 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期1-6,共6页
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based... Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived. 展开更多
关键词 BILINEAR equations equatION
下载PDF
An Extended Numerical Method by Stancu Polynomials for Solution of Integro-Differential Equations Arising in Oscillating Magnetic Fields
8
作者 Neşe İşler Acar 《Advances in Pure Mathematics》 2024年第10期785-796,共12页
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b... In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method. 展开更多
关键词 Stancu Polynomials Collocation Method Integro-Differential equations Linear equation Systems Matrix equations
下载PDF
Theoretical study of particle and energy balance equations in locally bounded plasmas
9
作者 Hyun-Su JUN Yat Fung TSANG +1 位作者 Jae Ok YOO Navab SINGH 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期89-98,共10页
In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all pl... In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls.However,in industrial plasma reactors for semiconductor manufacturing,the plasma is partially confined by internal reactor structures.We predict the effect of the open boundary area(A′_(L,eff))and ion escape velocity(u_(i))on electron temperature and density by developing new particle and energy balance equations.Theoretically,we found a low ion escape velocity(u_(i)/u_(B)≈0.2)and high open boundary area(A′_(L,eff)/A_(T,eff)≈0.6)to result in an approximately 38%increase in electron density and an 8%decrease in electron temperature compared to values in a fully bounded reactor.Additionally,we suggest that the velocity of ions passing through the open boundary should exceedω_(pi)λ_(De)under the condition E^(2)_(0)?(Φ/λ_(De))^(2). 展开更多
关键词 particle balance equation energy balance equation low temperature plasmas
下载PDF
Matrix Riccati Equations in Optimal Control
10
作者 Malick Ndiaye 《Applied Mathematics》 2024年第3期199-213,共15页
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho... In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control. 展开更多
关键词 Optimal Control Matrix Riccati equation Change of Variable
下载PDF
Analytical solutions fractional order partial differential equations arising in fluid dynamics
11
作者 Sidheswar Behera Jasvinder Singh Pal Virdi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第3期458-468,共11页
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio... This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB. 展开更多
关键词 the sine-cosine method He's fractional derivative analytical solution fractional Pade-Ⅱequation fractional generalized Zakharov equation
下载PDF
THE STABILITY OF BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION AROUND THE HYDROSTATIC BALANCE
12
作者 Saiguo XU Zhong TAN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1466-1486,共21页
This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss... This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3). 展开更多
关键词 Boussinesq equations partial dissipation stability DECAY
下载PDF
The Maxwell-Heaviside Equations Explained by the Theory of Informatons
13
作者 Antoine Acke 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1003-1016,共14页
In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitatio... In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitational interaction has been explained by the hypothesis that information carried by informatons is the substance of gravitational fields, i.e. the medium that the interaction in question makes possible. From the idea that “information carried by informatons” is its substance, it has been deduced that—on the macroscopic level—a gravitational field manifests itself as a dual entity, always having a field- and an induction component (Egand Bg) simultaneously created by their common sources. In this article we will mathematically deduce the Maxwell-Heaviside equations from the kinematics of the informatons. These relations describe on the macroscopic level how a gravitational field (Eg, Bg) is generated by whether or not moving masses and how spatial and temporal changes of Egand Bgare related. We show that there is no causal link between Egand Bg. 展开更多
关键词 GRAVITY Gravitational Field Maxwell equations Informatons
下载PDF
THE SMOOTHING EFFECT IN SHARP GEVREY SPACE FOR THE SPATIALLY HOMOGENEOUS NON-CUTOFF BOLTZMANN EQUATIONS WITH A HARDPOTENTIAL
14
作者 刘吕桥 曾娟 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期455-473,共19页
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e... In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates. 展开更多
关键词 Boltzmann equation Gevrey regularity non-cutoff hard potential
下载PDF
Besov Estimates for Sub-Elliptic Equations in the Heisenberg Group
15
作者 Huimin Cheng Feng Zhou 《Advances in Pure Mathematics》 2024年第9期744-758,共15页
In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Be... In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group. 展开更多
关键词 Heisenberg Group Sub-Elliptic equations REGULARITY Besov Spaces
下载PDF
On entire solutions of some Fermat type differential-difference equations
16
作者 LONG Jian-ren QIN Da-zhuan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期69-88,共20页
On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear ... On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14]. 展开更多
关键词 entire solutions differential-difference equations EXISTENCE finite order
下载PDF
ELLIPTIC EQUATIONS IN DIVERGENCE FORM WITH DISCONTINUOUS COEFFICIENTS IN DOMAINS WITH CORNERS
17
作者 Jun CHEN Xuemei DENG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1903-1915,共13页
We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across th... We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners. 展开更多
关键词 elliptic equations divergence form discontinuous coefficients corner regularity
下载PDF
ON THE STABILITY OF PERIODIC SOLUTIONS OF PIECEWISE SMOOTH PERIODIC DIFFERENTIAL EQUATIONS
18
作者 Maoan HAN Yan YE 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1524-1535,共12页
In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic sol... In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications. 展开更多
关键词 periodic solution Poincarémap periodic equation stability
下载PDF
On Two Types of Stability of Solutions to a Pair of Damped Coupled Nonlinear Evolution Equations
19
作者 Mark Jones 《Advances in Pure Mathematics》 2024年第5期354-366,共13页
The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid... The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense. 展开更多
关键词 Nonlinear Schrödinger equation STABILITY Capillary-Gravity Waves
下载PDF
Sparse-Grid Implementation of Fixed-Point Fast Sweeping WENO Schemes for Eikonal Equations
20
作者 Zachary M.Miksis Yong-Tao Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期3-29,共27页
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of ... Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids. 展开更多
关键词 Fixed-point fast sweeping methods Weighted essentially non-oscillatory(WENO)schemes Sparse grids Static Hamilton-Jacobi(H-J)equations Eikonal equations
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部