In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is...In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.展开更多
In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergen...In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.展开更多
We discuss the incomplete semi-iterative method (ISIM) for an approximate solution of a linear fixed point equations x=Tx+c with a bounded linear operator T acting on a complex Banach space X such that its resolvent h...We discuss the incomplete semi-iterative method (ISIM) for an approximate solution of a linear fixed point equations x=Tx+c with a bounded linear operator T acting on a complex Banach space X such that its resolvent has a pole of order k at the point 1. Sufficient conditions for the convergence of ISIM to a solution of x=Tx+c, where c belongs to the range space of R(I-T) k, are established. We show that the ISIM has an attractive feature that it is usually convergent even when the spectral radius of the operator T is greater than 1 and Ind 1T≥1. Applications in finite Markov chain is considered and illustrative examples are reported, showing the convergence rate of the ISIM is very high.展开更多
For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research i...For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research is the characterizations of the exponential dichotomy obtained in terms of Fredholm property of that associative operator. Particularly, we use Perron’s method, which was generalized on time scales by J. Zhang, M. Fan, H. Zhu in?[1], to show that if the associative operator is semi-Fredholm then the corresponding linear nonautonomous equation has an exponential dichotomy on both?T?+?and?T-.??Moreover, we also give the converse result that the linear systems have?an exponential dichotomy on both?T?+?andT-??then the associative operator is Fredholm on?T.展开更多
In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space whic...In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.展开更多
Let be a linear, closed, and densely defined unbounded operator, where X and Y are Hilbert spaces. Assume that A is not boundedly invertible. Suppose the equation Au=f is solvable, and instead of knowing exactly f onl...Let be a linear, closed, and densely defined unbounded operator, where X and Y are Hilbert spaces. Assume that A is not boundedly invertible. Suppose the equation Au=f is solvable, and instead of knowing exactly f only know its approximation satisfies the condition: In this paper, we are interested a regularization method to solve the approximation solution of this equation. This approximation is a unique global minimizer of the functional , for any , defined as follows: . We also study the stability of this method when the regularization parameter is selected a priori and a posteriori. At the same time, we give an application of this method to the weak derivative operator equation in Hilbert space.展开更多
Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-ve...Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations.展开更多
A double optimal solution of an n-dimensional system of linear equations Ax=b has been derived in an affine m-dimensional Krylov subspace with m <<n.We further develop a double optimal iterative algorithm(DOIA),...A double optimal solution of an n-dimensional system of linear equations Ax=b has been derived in an affine m-dimensional Krylov subspace with m <<n.We further develop a double optimal iterative algorithm(DOIA),with the descent direction z being solved from the residual equation Az=r0 by using its double optimal solution,to solve ill-posed linear problem under large noise.The DOIA is proven to be absolutely convergent step-by-step with the square residual error ||r||^2=||b-Ax||^2 being reduced by a positive quantity ||Azk||^2 at each iteration step,which is found to be better than those algorithms based on the minimization of the square residual error in an m-dimensional Krylov subspace.In order to tackle the ill-posed linear problem under a large noise,we also propose a novel double optimal regularization algorithm(DORA)to solve it,which is an improvement of the Tikhonov regularization method.Some numerical tests reveal the high performance of DOIA and DORA against large noise.These methods are of use in the ill-posed problems of structural health-monitoring.展开更多
Stability and global error bounds are studied for a class of stepsize-dependent linear multistep methods for nonlinear evolution equations governed by ω-dissipative vector fields in Banach space.To break through the ...Stability and global error bounds are studied for a class of stepsize-dependent linear multistep methods for nonlinear evolution equations governed by ω-dissipative vector fields in Banach space.To break through the order barrier p≤1 of unconditionally contractive linear multistep methods for dissipative systems,strongly dissipative systems are introduced.By employing the error growth function of the methods,new contractivity and convergence results of stepsize-dependent linear multistep methods on infinite integration intervals are provided for strictly dissipative systems(ω<0)and strongly dissipative systems.Some applications of the main results to several linear multistep methods,including the trapezoidal rule,are supplied.The theoretical results are also illustrated by a set of numerical experiments.展开更多
In this paper,we concern ourselves with the existence of positive solutions for a type of integral boundary value problem of fractional differential equations with the fractional order linear derivative operator. By u...In this paper,we concern ourselves with the existence of positive solutions for a type of integral boundary value problem of fractional differential equations with the fractional order linear derivative operator. By using the fixed point theorem in cone,the existence of positive solutions for the boundary value problem is obtained. Some examples are also presented to illustrate the application of our main results.展开更多
Unbounded operators can transform arbitrarily small vectors into arbitrarily large vectors—a phenomenon known as instability. Stabilization methods strive to approximate a value of an unbounded operator by applying a...Unbounded operators can transform arbitrarily small vectors into arbitrarily large vectors—a phenomenon known as instability. Stabilization methods strive to approximate a value of an unbounded operator by applying a family of bounded operators to rough approximate data that do not necessarily lie within the domain of unbounded operator. In this paper we shall be concerned with the stable method of computing values of unbounded operators having perturbations and the stability is established for this method.展开更多
In this paper, we discuss the existence and uniqueness of mild solutions of random impulsive abstract neutral partial differential equations in a real separable Hilbert space. The results are obtained by using Leray-S...In this paper, we discuss the existence and uniqueness of mild solutions of random impulsive abstract neutral partial differential equations in a real separable Hilbert space. The results are obtained by using Leray-Schauder Alternative and Banach Contraction Principle.Finally an example is given to illustrate our problem.展开更多
It is considered that the Tikhonov regularization with closed operators for solving linear operator equations of the first kind in the presence of perturbed operators. A class of the regularization parameter choice st...It is considered that the Tikhonov regularization with closed operators for solving linear operator equations of the first kind in the presence of perturbed operators. A class of the regularization parameter choice strategies that lead to optimal convergence rates are proposed.展开更多
We propose an accurate non numerical solution of the Fisher Equation (FE), capable of reproducing the known analytical solutions and those obtained from a numerical analysis. The form we propose is based on educated g...We propose an accurate non numerical solution of the Fisher Equation (FE), capable of reproducing the known analytical solutions and those obtained from a numerical analysis. The form we propose is based on educated guesses concerning the possibility of merging diffusive and logistic behavior into a single formula.展开更多
In this paper, we consider operators arising in the modeling of renewable systems with elements that can be in different states. These operators are functional operators with non-Carlemann shifts and they act in Holde...In this paper, we consider operators arising in the modeling of renewable systems with elements that can be in different states. These operators are functional operators with non-Carlemann shifts and they act in Holder spaces with weight. The main attention was paid to non-linear equations relating coefficients to operators with a shift. The solutions of these equations were used to reduce the operators under consideration to operators with shift, the invertibility conditions for which were found in previous articles of the authors. To construct the solution of the non-linear equation, we consider the coefficient factorization problem (the homogeneous equation with a zero right-hand side) and the jump problem (the non-homogeneous equation with a unit coefficient). The solution of the general equation is represented as a composition of the solutions to these two problems.展开更多
This paper is a survey for development of linear distributed parameter system.At first we point out some questions existing in current study of control theory for the L^(p)linear system with an unbounded control opera...This paper is a survey for development of linear distributed parameter system.At first we point out some questions existing in current study of control theory for the L^(p)linear system with an unbounded control operator and an unbounded observation operator,such as stabilization problem and observer theory that are closely relevant to state feedback operator.After then we survey briefly some results on relevant problems that are related to solvability of linear differential equations in general Banach space and semigroup perturbations.As a principle,we propose a concept of admissible state feedback operator for system(A,B).Finally we give an existence result of admissible state feedback operators,including semigroup generation and the equivalent conditions of admissibility of state feedback operators,for an L^(p)well-posed system.展开更多
This paper deals with the existence,uniqueness and continuous dependence of mild solutions for a class of conformable fractional differential equations with nonlocal initial conditions.The results are obtained by mean...This paper deals with the existence,uniqueness and continuous dependence of mild solutions for a class of conformable fractional differential equations with nonlocal initial conditions.The results are obtained by means of the classical fixed point theorems combined with the theory of cosine family of linear operators.展开更多
文摘In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.
基金The NSF(0611005)of Jiangxi Province and the SF(2007293)of Jiangxi Provincial Education Department.
文摘In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.
基金Project1 990 1 0 0 6 supported by National Natural Science Foundation of China,Doctoral Foundation of China,Chi-na Scholarship council and Laboratory of Computational Physics in Beijing of Chinathe second author is also supportedby the State Major Key
文摘We discuss the incomplete semi-iterative method (ISIM) for an approximate solution of a linear fixed point equations x=Tx+c with a bounded linear operator T acting on a complex Banach space X such that its resolvent has a pole of order k at the point 1. Sufficient conditions for the convergence of ISIM to a solution of x=Tx+c, where c belongs to the range space of R(I-T) k, are established. We show that the ISIM has an attractive feature that it is usually convergent even when the spectral radius of the operator T is greater than 1 and Ind 1T≥1. Applications in finite Markov chain is considered and illustrative examples are reported, showing the convergence rate of the ISIM is very high.
文摘For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research is the characterizations of the exponential dichotomy obtained in terms of Fredholm property of that associative operator. Particularly, we use Perron’s method, which was generalized on time scales by J. Zhang, M. Fan, H. Zhu in?[1], to show that if the associative operator is semi-Fredholm then the corresponding linear nonautonomous equation has an exponential dichotomy on both?T?+?and?T-.??Moreover, we also give the converse result that the linear systems have?an exponential dichotomy on both?T?+?andT-??then the associative operator is Fredholm on?T.
文摘In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.
文摘Let be a linear, closed, and densely defined unbounded operator, where X and Y are Hilbert spaces. Assume that A is not boundedly invertible. Suppose the equation Au=f is solvable, and instead of knowing exactly f only know its approximation satisfies the condition: In this paper, we are interested a regularization method to solve the approximation solution of this equation. This approximation is a unique global minimizer of the functional , for any , defined as follows: . We also study the stability of this method when the regularization parameter is selected a priori and a posteriori. At the same time, we give an application of this method to the weak derivative operator equation in Hilbert space.
基金supported by the National Natural Science Foundation of China(Grant No.12031004 and Grant No.12271474,61877054)the Fundamental Research Foundation for the Central Universities(Project No.K20210337)+1 种基金the Zhejiang University Global Partnership Fund,188170+194452119/003partially funded by a state task of Russian Fundamental Investigations(State Registration No.FFSG-2024-0002)。
文摘Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations.
文摘A double optimal solution of an n-dimensional system of linear equations Ax=b has been derived in an affine m-dimensional Krylov subspace with m <<n.We further develop a double optimal iterative algorithm(DOIA),with the descent direction z being solved from the residual equation Az=r0 by using its double optimal solution,to solve ill-posed linear problem under large noise.The DOIA is proven to be absolutely convergent step-by-step with the square residual error ||r||^2=||b-Ax||^2 being reduced by a positive quantity ||Azk||^2 at each iteration step,which is found to be better than those algorithms based on the minimization of the square residual error in an m-dimensional Krylov subspace.In order to tackle the ill-posed linear problem under a large noise,we also propose a novel double optimal regularization algorithm(DORA)to solve it,which is an improvement of the Tikhonov regularization method.Some numerical tests reveal the high performance of DOIA and DORA against large noise.These methods are of use in the ill-posed problems of structural health-monitoring.
基金supported by the Natural Science Foundation of China(Grant Nos.12271367,11771060)by the Science and Technology Innovation Plan of Shanghai,China(Grant No.20JC1414200)sponsored by the Natural Science Foundation of Shanghai,China(Grant No.20ZR1441200).
文摘Stability and global error bounds are studied for a class of stepsize-dependent linear multistep methods for nonlinear evolution equations governed by ω-dissipative vector fields in Banach space.To break through the order barrier p≤1 of unconditionally contractive linear multistep methods for dissipative systems,strongly dissipative systems are introduced.By employing the error growth function of the methods,new contractivity and convergence results of stepsize-dependent linear multistep methods on infinite integration intervals are provided for strictly dissipative systems(ω<0)and strongly dissipative systems.Some applications of the main results to several linear multistep methods,including the trapezoidal rule,are supplied.The theoretical results are also illustrated by a set of numerical experiments.
基金supported by Natural Science Foundation of China(No.11171220) Support Projects of University of Shanghai for Science and Technology(No.14XPM01)
文摘In this paper,we concern ourselves with the existence of positive solutions for a type of integral boundary value problem of fractional differential equations with the fractional order linear derivative operator. By using the fixed point theorem in cone,the existence of positive solutions for the boundary value problem is obtained. Some examples are also presented to illustrate the application of our main results.
文摘Unbounded operators can transform arbitrarily small vectors into arbitrarily large vectors—a phenomenon known as instability. Stabilization methods strive to approximate a value of an unbounded operator by applying a family of bounded operators to rough approximate data that do not necessarily lie within the domain of unbounded operator. In this paper we shall be concerned with the stable method of computing values of unbounded operators having perturbations and the stability is established for this method.
文摘In this paper, we discuss the existence and uniqueness of mild solutions of random impulsive abstract neutral partial differential equations in a real separable Hilbert space. The results are obtained by using Leray-Schauder Alternative and Banach Contraction Principle.Finally an example is given to illustrate our problem.
文摘It is considered that the Tikhonov regularization with closed operators for solving linear operator equations of the first kind in the presence of perturbed operators. A class of the regularization parameter choice strategies that lead to optimal convergence rates are proposed.
文摘We propose an accurate non numerical solution of the Fisher Equation (FE), capable of reproducing the known analytical solutions and those obtained from a numerical analysis. The form we propose is based on educated guesses concerning the possibility of merging diffusive and logistic behavior into a single formula.
文摘In this paper, we consider operators arising in the modeling of renewable systems with elements that can be in different states. These operators are functional operators with non-Carlemann shifts and they act in Holder spaces with weight. The main attention was paid to non-linear equations relating coefficients to operators with a shift. The solutions of these equations were used to reduce the operators under consideration to operators with shift, the invertibility conditions for which were found in previous articles of the authors. To construct the solution of the non-linear equation, we consider the coefficient factorization problem (the homogeneous equation with a zero right-hand side) and the jump problem (the non-homogeneous equation with a unit coefficient). The solution of the general equation is represented as a composition of the solutions to these two problems.
基金supported in part by the National Natural Science Foundation of China(Grant No.61773277).
文摘This paper is a survey for development of linear distributed parameter system.At first we point out some questions existing in current study of control theory for the L^(p)linear system with an unbounded control operator and an unbounded observation operator,such as stabilization problem and observer theory that are closely relevant to state feedback operator.After then we survey briefly some results on relevant problems that are related to solvability of linear differential equations in general Banach space and semigroup perturbations.As a principle,we propose a concept of admissible state feedback operator for system(A,B).Finally we give an existence result of admissible state feedback operators,including semigroup generation and the equivalent conditions of admissibility of state feedback operators,for an L^(p)well-posed system.
文摘This paper deals with the existence,uniqueness and continuous dependence of mild solutions for a class of conformable fractional differential equations with nonlocal initial conditions.The results are obtained by means of the classical fixed point theorems combined with the theory of cosine family of linear operators.