A new regression algorithm of an adaptive reduced relevance vector machine is proposed to estimate the illumination chromaticity of an image for the purpose of color constancy. Within the framework of sparse Bayesian ...A new regression algorithm of an adaptive reduced relevance vector machine is proposed to estimate the illumination chromaticity of an image for the purpose of color constancy. Within the framework of sparse Bayesian learning, the algorithm extends the relevance vector machine by combining global and local kernels adaptively in the form of multiple kernels, and the improved locality preserving projection (LLP) is then applied to reduce the column dimension of the multiple kernel input matrix to achieve less training time. To estimate the illumination chromaticity, the algorithm is trained by fuzzy central values of chromaticity histograms of a set of images and the corresponding illuminants. Experiments with real images indicate that the proposed algorithm performs better than the support vector machine and the relevance vector machine while requiring less training time than the relevance vector machine.展开更多
In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information ...In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information in the intensity image to estimate the illumination. After locating the points, the whole illumination image was computed by an interpolation technique. When attempting to recover the reflectance image, an adaptive method which can be considered as an optimization problem was employed to suppress noise in dark environments and keep details in other areas. For color images, it was taken in the band of each channel separately. Experimental results demonstrate that the proposed algorithm is superior to the traditional Retinex algorithms in image entropy.展开更多
An algorithm is presented for estimating the direction and strength of point light with the strength of ambient illumination. Existing approaches evaluate these illumination parameters directly in the high dimensional...An algorithm is presented for estimating the direction and strength of point light with the strength of ambient illumination. Existing approaches evaluate these illumination parameters directly in the high dimensional image space, while we estimate the parameters in two steps: first by projecting the image to an orthogonal linear subspace based on spherical harmonic basis functions and then by calculating the parameters in the low dimensional subspace. The test results using the CMU PIE database and Yale Database B show the stability and effectiveness of the method. The resulting illumination information can be used to synthesize more realistic relighting images and to recognize objects under variable illumination.展开更多
基金The National Natural Science Foundation of China(No60573139)the Innovation Foundation of Xidian University forGraduates (No05008)
文摘A new regression algorithm of an adaptive reduced relevance vector machine is proposed to estimate the illumination chromaticity of an image for the purpose of color constancy. Within the framework of sparse Bayesian learning, the algorithm extends the relevance vector machine by combining global and local kernels adaptively in the form of multiple kernels, and the improved locality preserving projection (LLP) is then applied to reduce the column dimension of the multiple kernel input matrix to achieve less training time. To estimate the illumination chromaticity, the algorithm is trained by fuzzy central values of chromaticity histograms of a set of images and the corresponding illuminants. Experiments with real images indicate that the proposed algorithm performs better than the support vector machine and the relevance vector machine while requiring less training time than the relevance vector machine.
基金Project(61071162) supported by the National Natural Science Foundation of China
文摘In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information in the intensity image to estimate the illumination. After locating the points, the whole illumination image was computed by an interpolation technique. When attempting to recover the reflectance image, an adaptive method which can be considered as an optimization problem was employed to suppress noise in dark environments and keep details in other areas. For color images, it was taken in the band of each channel separately. Experimental results demonstrate that the proposed algorithm is superior to the traditional Retinex algorithms in image entropy.
基金the National Natural Science Foundation of China (No. 60273005)
文摘An algorithm is presented for estimating the direction and strength of point light with the strength of ambient illumination. Existing approaches evaluate these illumination parameters directly in the high dimensional image space, while we estimate the parameters in two steps: first by projecting the image to an orthogonal linear subspace based on spherical harmonic basis functions and then by calculating the parameters in the low dimensional subspace. The test results using the CMU PIE database and Yale Database B show the stability and effectiveness of the method. The resulting illumination information can be used to synthesize more realistic relighting images and to recognize objects under variable illumination.