A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction g...A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction grating to achieve a specific interference pattern. The experimental results match well with the simulations. The portability and flexibility of the structured illumination chip can be increased greatly through horizontal encapsulation. High levels of integration, compared with the conventional structured illumination approach, make this chip very compact, with a footprint of only around 1 mm2. The chip has no optical lenses and can be easily combined with a microfluidic system. These properties would make the chip very suitable for portable 3D scanner and compact super-resolution microscopy applications.展开更多
A woofer–tweeter adaptive optical structured illumination microscope(AOSIM) is presented. By combining a low-spatial-frequency large-stroke deformable mirror(woofer) with a high-spatial-frequency low-stroke deformabl...A woofer–tweeter adaptive optical structured illumination microscope(AOSIM) is presented. By combining a low-spatial-frequency large-stroke deformable mirror(woofer) with a high-spatial-frequency low-stroke deformable mirror(tweeter), we are able to remove both large-amplitude and high-order aberrations. In addition, using the structured illumination method, as compared to widefield microscopy, the AOSIM can accomplish highresolution imaging and possesses better sectioning capability. The AOSIM was tested by correcting a large aberration from a trial lens in the conjugate plane of the microscope objective aperture. The experimental results show that the AOSIM has a point spread function with an FWHM that is 140 nm wide(using a water immersion objective lens with NA=1.1) after correcting a large aberration(5.9 μm peak-to-valley wavefront error with 2.05 μm RMS aberration). After structured light illumination is applied, the results show that we are able to resolve two beads that are separated by 145 nm, 1.62× below the diffraction limit of 235 nm. Furthermore, we demonstrate the application of the AOSIM in the field of bioimaging. The sample under investigation was a green-fluorescentprotein-labeled Drosophila embryo. The aberrations from the refractive index mismatch between the microscope objective, the immersion fluid, the cover slip, and the sample itself are well corrected. Using AOSIM we were able to increase the SNR for our Drosophila embryo sample by 5×.展开更多
In this Letter,we propose an on-line inspection method based on a plenoptic camera to detect and locate flaws of optics.Specifically,due to the extended depth of field of the plenoptic camera,a series of optics can be...In this Letter,we propose an on-line inspection method based on a plenoptic camera to detect and locate flaws of optics.Specifically,due to the extended depth of field of the plenoptic camera,a series of optics can be inspected efficiently and simultaneously.Moreover,the depth estimation capability of the plenoptic camera allows for locating flaws while detecting them.Besides,the detection and location can be implemented with a single snapshot of the plenoptic camera.Consequently,this method provides us with the opportunity to reduce the cost of time and labor of inspection and remove the flaw optics,which may lead to performance degradation of optical systems.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61334008the National High-Technology Research and Development Program of China under Grant No 2015AA016904the Instrument Developing Project of the Chinese Academy of Sciences under Grant No YZ201301
文摘A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction grating to achieve a specific interference pattern. The experimental results match well with the simulations. The portability and flexibility of the structured illumination chip can be increased greatly through horizontal encapsulation. High levels of integration, compared with the conventional structured illumination approach, make this chip very compact, with a footprint of only around 1 mm2. The chip has no optical lenses and can be easily combined with a microfluidic system. These properties would make the chip very suitable for portable 3D scanner and compact super-resolution microscopy applications.
基金UC Office of the President(MR-15-327968)National Science Foundation(NSF)(1353461)National Institutes of Health(NIH)(R21MH101688)
文摘A woofer–tweeter adaptive optical structured illumination microscope(AOSIM) is presented. By combining a low-spatial-frequency large-stroke deformable mirror(woofer) with a high-spatial-frequency low-stroke deformable mirror(tweeter), we are able to remove both large-amplitude and high-order aberrations. In addition, using the structured illumination method, as compared to widefield microscopy, the AOSIM can accomplish highresolution imaging and possesses better sectioning capability. The AOSIM was tested by correcting a large aberration from a trial lens in the conjugate plane of the microscope objective aperture. The experimental results show that the AOSIM has a point spread function with an FWHM that is 140 nm wide(using a water immersion objective lens with NA=1.1) after correcting a large aberration(5.9 μm peak-to-valley wavefront error with 2.05 μm RMS aberration). After structured light illumination is applied, the results show that we are able to resolve two beads that are separated by 145 nm, 1.62× below the diffraction limit of 235 nm. Furthermore, we demonstrate the application of the AOSIM in the field of bioimaging. The sample under investigation was a green-fluorescentprotein-labeled Drosophila embryo. The aberrations from the refractive index mismatch between the microscope objective, the immersion fluid, the cover slip, and the sample itself are well corrected. Using AOSIM we were able to increase the SNR for our Drosophila embryo sample by 5×.
基金supported by the Key Scientific Equipment Develop Project of China(No.ZDYZ20132)the National“863”Program of China(Nos.G158603 and G158201)
文摘In this Letter,we propose an on-line inspection method based on a plenoptic camera to detect and locate flaws of optics.Specifically,due to the extended depth of field of the plenoptic camera,a series of optics can be inspected efficiently and simultaneously.Moreover,the depth estimation capability of the plenoptic camera allows for locating flaws while detecting them.Besides,the detection and location can be implemented with a single snapshot of the plenoptic camera.Consequently,this method provides us with the opportunity to reduce the cost of time and labor of inspection and remove the flaw optics,which may lead to performance degradation of optical systems.