期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Structured Illumination Chip Based on Integrated Optics 被引量:1
1
作者 刘勇 王辰 +3 位作者 Anastasia Nemkova 胡诗铭 李智勇 俞育德 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第5期46-49,共4页
A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction g... A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction grating to achieve a specific interference pattern. The experimental results match well with the simulations. The portability and flexibility of the structured illumination chip can be increased greatly through horizontal encapsulation. High levels of integration, compared with the conventional structured illumination approach, make this chip very compact, with a footprint of only around 1 mm2. The chip has no optical lenses and can be easily combined with a microfluidic system. These properties would make the chip very suitable for portable 3D scanner and compact super-resolution microscopy applications. 展开更多
关键词 of for Structured illumination Chip Based on Integrated optics IS on SOI into been
下载PDF
Woofer–tweeter adaptive optical structured illumination microscopy 被引量:3
2
作者 QINGGELE LI MARC REINIG +4 位作者 DAICH KAMIYAMA BO HUANG XIAODONG TAO ALEX BARDALES JOEL KUBBY 《Photonics Research》 SCIE EI 2017年第4期329-334,共6页
A woofer–tweeter adaptive optical structured illumination microscope(AOSIM) is presented. By combining a low-spatial-frequency large-stroke deformable mirror(woofer) with a high-spatial-frequency low-stroke deformabl... A woofer–tweeter adaptive optical structured illumination microscope(AOSIM) is presented. By combining a low-spatial-frequency large-stroke deformable mirror(woofer) with a high-spatial-frequency low-stroke deformable mirror(tweeter), we are able to remove both large-amplitude and high-order aberrations. In addition, using the structured illumination method, as compared to widefield microscopy, the AOSIM can accomplish highresolution imaging and possesses better sectioning capability. The AOSIM was tested by correcting a large aberration from a trial lens in the conjugate plane of the microscope objective aperture. The experimental results show that the AOSIM has a point spread function with an FWHM that is 140 nm wide(using a water immersion objective lens with NA=1.1) after correcting a large aberration(5.9 μm peak-to-valley wavefront error with 2.05 μm RMS aberration). After structured light illumination is applied, the results show that we are able to resolve two beads that are separated by 145 nm, 1.62× below the diffraction limit of 235 nm. Furthermore, we demonstrate the application of the AOSIM in the field of bioimaging. The sample under investigation was a green-fluorescentprotein-labeled Drosophila embryo. The aberrations from the refractive index mismatch between the microscope objective, the immersion fluid, the cover slip, and the sample itself are well corrected. Using AOSIM we were able to increase the SNR for our Drosophila embryo sample by 5×. 展开更多
关键词 AO SIM WOOFER tweeter adaptive optical structured illumination microscopy
原文传递
Optic flaws detection and location based on a plenoptic camera
3
作者 栾银森 许冰 +1 位作者 杨平 汤国茂 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第4期34-38,共5页
In this Letter,we propose an on-line inspection method based on a plenoptic camera to detect and locate flaws of optics.Specifically,due to the extended depth of field of the plenoptic camera,a series of optics can be... In this Letter,we propose an on-line inspection method based on a plenoptic camera to detect and locate flaws of optics.Specifically,due to the extended depth of field of the plenoptic camera,a series of optics can be inspected efficiently and simultaneously.Moreover,the depth estimation capability of the plenoptic camera allows for locating flaws while detecting them.Besides,the detection and location can be implemented with a single snapshot of the plenoptic camera.Consequently,this method provides us with the opportunity to reduce the cost of time and labor of inspection and remove the flaw optics,which may lead to performance degradation of optical systems. 展开更多
关键词 camera inspection optics detecting pixel opportunity mirrors locating illumination remove
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部