A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. F...A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. First, it iteratively finds an approximation by selecting M atoms instead of one at a time. Second, the inner product computations are confined within only a fraction of dictionary atoms at each iteration. The modifications are implemented very efficiently due to the spatial incoherence of the dictionary. Experimental results show that compared with full search matching pursuit, the proposed algorithm achieves a speed-up gain of 14.4-36.7 times while maintaining the approximation quality.展开更多
Currently, most visual servoing system must be calibrated, while it is impossible to calibrate cameras and robot models precisely in industrial practice, so a novel dynamic uncalibrated eye-in-hand visual servoing sys...Currently, most visual servoing system must be calibrated, while it is impossible to calibrate cameras and robot models precisely in industrial practice, so a novel dynamic uncalibrated eye-in-hand visual servoing system of tracking a moving target is proposed. The method does not require calibration of camera and robot kinematic models. Vision guided algorithm for tracking dynamic image is developed through minimizing nonlinear objective function. For the large residual has not been approximated in dynamic environment and the change of composite image Jacobian with time increment has not been computed in visual servoing system now,large residuals are dynamic approximated and the change of composite image Jacobian at each iterative step is computed. Simulation results demonstrate the validity of these approaches.展开更多
文摘A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. First, it iteratively finds an approximation by selecting M atoms instead of one at a time. Second, the inner product computations are confined within only a fraction of dictionary atoms at each iteration. The modifications are implemented very efficiently due to the spatial incoherence of the dictionary. Experimental results show that compared with full search matching pursuit, the proposed algorithm achieves a speed-up gain of 14.4-36.7 times while maintaining the approximation quality.
文摘Currently, most visual servoing system must be calibrated, while it is impossible to calibrate cameras and robot models precisely in industrial practice, so a novel dynamic uncalibrated eye-in-hand visual servoing system of tracking a moving target is proposed. The method does not require calibration of camera and robot kinematic models. Vision guided algorithm for tracking dynamic image is developed through minimizing nonlinear objective function. For the large residual has not been approximated in dynamic environment and the change of composite image Jacobian with time increment has not been computed in visual servoing system now,large residuals are dynamic approximated and the change of composite image Jacobian at each iterative step is computed. Simulation results demonstrate the validity of these approaches.